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Abstract

Given Polish spaces X and Y and a Borel set S ⊆ X × Y with
countable sections, we describe the circumstances under which a
Borel function f : S → R is of the form f(x, y) = u(x) + v(y), where
u : X → R and v : Y → R are Borel. This turns out to be a spe-
cial case of the problem of determining whether a real-valued Borel
cocycle on a countable Borel equivalence relation is a coboundary.
We use several Glimm-Effros style dichotomies to give a solution to
this problem in terms of certain σ-finite measures on the underlying
space. The main new technical ingredient is a characterization of the
existence of type III measures of a given cocycle.

Suppose that S ⊆ X×Y and G is a group. A coordinatewise decomposition
of a function f : S → G is a pair (u, v), where u : X → G, v : Y → G, and

∀(x, y) ∈ S (f(x, y) = u(x)v(y)).

If X and Y are Polish spaces, G is a standard Borel group, and u and v
are Borel, then we say that (u, v) is a Borel coordinatewise decomposition
of f . Our main goal here is to show that when S is a Borel set with
countable sections, f : S → G is Borel, and G = 〈R, +〉, the existence
of a Borel coordinatewise decomposition can be characterized in terms of
certain σ-finite measures on the disjoint union of X and Y (by a measure on
a Polish space, we shall mean always a measure on its Borel subsets). Before
getting to this, however, we consider first the existence of coordinatewise
decompositions, without imposing any definability restrictions.
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For the sake of notational convenience, we assume that X ∩ Y = ∅.
Associated with each set S ⊆ X × Y is the set ZS = X ∪ Y , the graph
GS = S ∪ S−1 on ZS, the equivalence relation ES on ZS whose equivalence
classes are the connected components of GS, and the groupoid ΓS of all
paths through GS. We use γ−1 to denote the reversal of a path γ, and γ1γ2

to denote the concatenation of paths γ1 and γ2. Observe that each function
f : S → G extends to a unique groupoid homomorphism, i.e., there is a
unique function ϕf : ΓS → G such that:

1. ∀(x, y) ∈ S (ϕf (〈x, y〉) = f(x, y)).

2. ∀γ ∈ ΓS (ϕf (γ−1) = ϕf (γ)−1).

3. ∀γ, γ1, γ2 ∈ ΓS (γ = γ1γ2 ⇒ ϕf (γ) = ϕf (γ1)ϕf (γ2)).

We say that γ ∈ ΓS is a loop if its initial and terminal points coincide. The
following fact was proven essentially by Cowsik-K lopotowski-Nadkarni [1]:

Proposition 1 Suppose that X and Y are disjoint, S ⊆ X × Y , G is a
group, and f : S → G. Then the following are equivalent:

1. f admits a coordinatewise decomposition.

2. ∀γ ∈ ΓS (γ is a loop ⇒ ϕf (γ) = 1G).

Proof. To see (1) ⇒ (2), suppose that (u, v) is a coordinatewise decom-
position of f and γ is a loop. If γ = 〈x0, y0, . . . , xn, yn, x0〉, then

ϕf (γ) = f(x0, y0)f(x1, y0)
−1 · · · f(xn, yn)f(x0, yn)−1

= (u(x0)v(y0))(u(x1)v(y0))
−1 · · · (u(xn)v(yn))(u(x0)v(yn))−1

= 1G.

The case that γ = 〈y0, x0, . . . , yn, xn, y0〉 is handled similarly.
To see (2) ⇒ (1), fix a transversal B ⊆ ZS of ES (i.e., a set which

intersects every ES-class in exactly one point), and let d be the graph metric
associated with GS. Fix g : ZS \B → ZS such that

∀z ∈ ZS \B ((z, g(z)) ∈ GS and d(g(z), B) < d(z, B)),

and define recursively u : X → G and v : Y → G by

u(x) =

{
1G if x ∈ B,

f(x, g(x))v(g(x))−1 otherwise,
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and

v(y) =

{
1G if y ∈ B,

u(g(y))−1f(g(y), y) otherwise.

To see that (u, v) is a coordinatewise decomposition of f , note first that if
g(x) = y, then u(x) = f(x, y)v(y)−1, thus f(x, y) = u(x)v(y). Similarly, if
g(y) = x, then v(y) = u(x)−1f(x, y), thus f(x, y) = u(x)v(y).

Finally, suppose that (x0, y0) ∈ S \ (graph(g) ∪ graph(g−1)), and fix a
loop γ = 〈x0, y0, . . . , xn, yn, x0〉 such that, with the exception of (x0, y0),
successive pairs along γ are in graph(g)∪graph(g−1). Then γ = γ1γ2, where
γ1 = 〈x0, y0, x1〉 and γ2 = 〈x1, y1, . . . , xn, yn, x0〉. Observe now that

ϕf (γ2) = f(x1, y1)f(x2, y1)
−1 · · · f(xn, yn)f(x0, yn)−1

= u(x1)v(y1)(u(x2)v(y1))
−1 · · ·u(xn)v(yn)(u(x0)v(yn))−1

= u(x1)u(x0)
−1.

As ϕf (γ1)ϕf (γ2) = ϕf (γ) = 1, it follows that ϕf (γ1) = ϕf (γ2)
−1, thus

u(x0)u(x1)
−1 = ϕf (γ1)

= f(x0, y0)f(x1, y0)
−1

= f(x0, y0)(u(x1)v(y0))
−1,

and it easily follows that f(x0, y0) = u(x0)v(y0). a

We now turn back to our main question which, in the special case that
G = 〈C, +〉, was considered earlier by Cowsik-K lopotowski-Nadkarni [1]:

Question 2 Suppose that X and Y are disjoint Polish spaces, S ⊆ X × Y
is Borel, G is a standard Borel group, and f : S → G is Borel. Under what
circumstances does f admit a Borel coordinatewise decomposition?

Suppose that X is a Polish space, E is an equivalence relation on X,
and G is a standard Borel group. We say that ρ : E → G is a cocycle if

∀xEyEz (ρ(x, z) = ρ(x, y)ρ(y, z)).

We say that cocycles ρ1, ρ2 : E → G are (Borel) cohomologous if there is a
Borel function w : X → G such that ∀xEy (ρ1(x, y) = w(x)ρ2(x, y)w(y)−1),
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and a cocycle ρ : E → G is a (Borel) coboundary if it is cohomologous to
the trivial cocycle, i.e., if there is a Borel function w : X → G such that
∀xEy (ρ(x, y) = w(x)w(y)−1). Note that if G is abelian, then ρ1, ρ2 : E → G
are cohomologous if and only if ρ(x, y) = ρ1(x, y)ρ2(x, y)−1 is a coboundary.

As we have already answered the non-descriptive version of Question 2,
let us assume that f admits a coordinatewise decomposition. In this case,
Proposition 1 ensures that if γ1, γ2 ∈ ΓS have the same initial and terminal
points, then ϕf (γ1) = ϕf (γ2), so we can define ρf : ES → G by

ρf (x, y) = ϕf (γ),

where γ ∈ ΓS is any path from x to y. As ϕf is a groupoid homomorphism,
it follows that ρf is a cocycle. Note also that if ES is Borel (which holds,
for example, if S has countable sections), then so too is ρf .

Proposition 3 Suppose that X and Y are disjoint Polish spaces, S ⊆
X × Y is Borel, G is a standard Borel group, and f : S → G is a Borel
function that admits a coordinatewise decomposition. Then the following are
equivalent:

1. f admits a Borel coordinatewise decomposition.

2. ρf is a coboundary.

Proof. To see (1) ⇒ (2), suppose that (u, v) is a Borel coordinatewise
decomposition of f , define w : ZS → G by

w(z) =

{
u(z) if z ∈ X,

v(z)−1 if z ∈ Y,

and set Γ = {〈z1, . . . , zn〉 ∈ ΓS : ϕf (〈z1, . . . , zn〉) = w(z1)w(zn)−1}. If
(x, y) ∈ S, then

ϕf (〈x, y〉) = f(x, y) = u(x)v(y) = w(x)w(y)−1,

thus 〈x, y〉 ∈ Γ. As Γ is closed under reversal and concatenation, it follows
that Γ = ΓS. As any two ES-related points z1, z2 ∈ ZS are connected by a
path γ ∈ ΓS from z1 to z2, it follows that

ρf (z1, z2) = ϕf (γ) = w(z1)w(z2)
−1,
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thus ρf is a coboundary.
To see (2) ⇒ (1), suppose that w : ZS → G is a Borel function such that

∀z1ESz2 (ρf (z1, z2) = w(z1)w(z2)
−1),

define u : X → G and v : Y → G by

u(x) = w(x) and v(y) = w(y)−1,

and note that for all (x, y) ∈ S,

f(x, y) = ϕf (〈x, y〉) = ρf (x, y) = w(x)w(y)−1 = u(x)v(y),

thus (u, v) is a Borel coordinatewise decomposition of f . a

Proposition 3 shows that Question 2 is a special case of:

Question 4 Under what circumstances is a cocycle a coboundary?

We will answer the special case of Question 4 in which E is a countable
Borel equivalence relation, ρ : E → G is Borel, and G = 〈R, +〉. This will,
in turn, give also an answer to the special case of Question 2 in which S has
countable sections and G = 〈R, +〉. For notational convenience, we work
with 〈(0,∞), ·〉 instead of 〈R, +〉.

We begin by noting a simple measure-theoretic restriction imposed upon
cohomologous Borel cocycles. We use [E] to denote the group of all Borel
automorphisms f : X → X such that graph(f) ⊆ E. A measure µ on X is
E-invariant if every element of [E] is µ-preserving, and µ is ρ-invariant if
for every Borel function ϕ : X → (0,∞) and f ∈ [E], we have that∫

ϕ(x) df∗µ(x) =

∫
ϕ(x)ρ(f−1(x), x) dµ(x).

When ρ is the trivial cocycle, this says exactly that µ is E-invariant.

Proposition 5 Suppose that X is a Polish space, E is a countable Borel
equivalence relation on X, and ρ1, ρ2 : E → (0,∞) are cohomologous Borel
cocycles. Then every ρ1-invariant, σ-finite measure is equivalent to a ρ2-
invariant, σ-finite measure.
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Proof. Suppose that µ1 is a ρ1-invariant, σ-finite measure, fix a Borel
function w : X → (0,∞) such that ∀xEy (ρ2(x, y)/ρ1(x, y) = w(x)/w(y)),
and set µ2 =

∫
w dµ1. It is clear that µ1 ∼ µ2 and µ2 is σ-finite, and if

ϕ : X → (0,∞) is Borel and f ∈ [E], then∫
ϕ(x) df∗µ2(x) =

∫
ϕ(f(x)) dµ2(x)

=

∫
ϕ(f(x))w(x) dµ1(x)

=

∫
ϕ(x)w(f−1(x)) df∗µ1(x)

=

∫
ϕ(x)w(f−1(x))ρ1(f

−1(x), x) dµ1(x)

=

∫
ϕ(x)ρ2(f

−1(x), x)w(x) dµ1(x)

=

∫
ϕ(x)ρ2(f

−1(x), x) dµ2(x),

thus µ2 is ρ2-invariant. a

In particular, we obtain the following:

Corollary 6 Suppose that X is a Polish space, E is a countable Borel
equivalence relation on X, and ρ : E → (0,∞) is a Borel cocycle. If ρ
is a coboundary, then for every σ-finite measure µ on X, the following are
equivalent:

1. There is a σ-finite, E-invariant measure equivalent to µ.

2. There is a σ-finite, ρ-invariant measure equivalent to µ.

The main result of this paper is that conversely, if conditions (1) and (2)
of Corollary 6 are equivalent, then ρ is a coboundary. The proof consists
essentially of chaining together 3 different Glimm-Effros style dichotomies,
each of which characterizes the circumstances under which E admits a σ-
finite measure of a particular type, in terms of appropriate σ-ideals on the
underlying space. We describe next these dichotomy theorems which, for
the sake of clarity, we actually state as equivalences.
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A set A ⊆ X is a partial transversal of E if it intersects every equivalence
class of E in at most one point. Let Ismooth denote the σ-ideal generated by
the Borel partial transversals of E. Given x ∈ X, we use [x]E to denote the
E-class of x, and we say that a set A ⊆ X is E-invariant if for all x ∈ A,
the set [x]E is contained in A. A measure µ on X is E-ergodic if every
E-invariant Borel set is µ-null or µ-conull. Shelah-Weiss [5] have shown
essentially the following:

Theorem 7 Suppose that X is a Polish space and E is a countable Borel
equivalence relation on X. Then the following are equivalent:

1. X /∈ Ismooth.

2. There is an atomless, E-ergodic, E-invariant, σ-finite measure.

A set A ⊆ X is ρ-discrete if there exists ε > 0 such that

∀x, y ∈ A (xEy ⇒ (x = y or ρ(x, y) ≤ 1/(1 + ε) or ρ(x, y) ≥ 1 + ε)).

Let Idiscrete denote the σ-ideal generated by the ρ-discrete Borel sets.
A measure µ is E-quasi-invariant if every f ∈ [E] sends µ-null sets to

µ-null sets. As noted in §2 of Miller [4], every E-quasi-invariant, σ-finite
measure is invariant with respect to some Borel cocycle ρ : E → (0,∞), and
moreover, this cocycle is unique modulo E-invariant null sets. The family
of E-ergodic, E-quasi-invariant, σ-finite measures can be broken into three
types. We say that µ is of type I if it is atomic, µ is of type II if it is
equivalent to an atomless, E-invariant, E-ergodic, σ-finite measure on X,
and µ is of type III otherwise. The following fact was shown essentially in
§3 of Miller [4]:

Theorem 8 Suppose that X is a Polish space, E is a countable Borel equiv-
alence relation on X, and ρ : E → (0,∞) is a Borel cocycle. Then the
following are equivalent:

1. X /∈ Idiscrete.

2. There is a ρ-invariant measure of type II.

3. There is a ρ-invariant measure of type II or III.
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We will actually need only the easy direction of Theorem 8; the full result
is stated above so as to present a more detailed picture of the interaction
between the σ-ideal generated by the ρ-discrete Borel sets and the set of
measures on the underlying space.

A set A ⊆ X is ρ-bounded if there exists ε > 0 such that

∀x, y ∈ A (xEy ⇒ 1/(1 + ε) ≤ ρ(x, y) ≤ 1 + ε).

Let Ibounded denote the σ-ideal generated by the ρ-bounded Borel sets.

Proposition 9 Suppose that X is a Polish space, E is a countable Borel
equivalence relation on X, and ρ : E → (0,∞) is a Borel cocycle. Then the
following are equivalent:

1. X ∈ Ibounded.

2. ρ is a coboundary.

Proof. To see (1) ⇒ (2), suppose that B0, B1, . . . ⊆ X are ρ-bounded
Borel sets such that X =

⋃
n∈N Bn, associate with each x ∈ X the least

n(x) ∈ N such that Bn(x) ∩ [x]E 6= ∅, and define w : X → (0,∞) by

w(x) = sup{ρ(x, z) : z ∈ Bn(x) ∩ [x]E}.

Suppose now that x, y lie in the same E-class C. Fix ε > 0, choose z ∈ C
such that w(x) ≤ ρ(x, z)(1 + ε) and w(y) ≤ ρ(y, z)(1 + ε), and observe that

ρ(x, z)/ρ(y, z)(1 + ε) ≤ w(x)/w(y) ≤ ρ(x, z)(1 + ε)/ρ(y, z).

As ρ(x, z)/ρ(y, z) = ρ(x, y) and ε > 0 was arbitrary, it follows that ρ(x, y) =
w(x)/w(y), thus ρ is a coboundary.

To see (2) ⇒ (1), suppose that w : X → (0,∞) is a Borel function
such that ρ(x, y) = w(x)/w(y), and observe that the sets w−1([1/n, n]), for
n ∈ Z+, are ρ-bounded and cover X. a

This leads to the last of our three dichotomies, which is also the only
one that is new, and consequently, the only one that we shall prove here.
We will state this dichotomy in terms of the σ-ideal

Ibounded ∨ Idiscrete = {A ∪B : A ∈ Ibounded and B ∈ Idiscrete}.
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Theorem 10 Suppose that X is a Polish space, E is a countable Borel
equivalence relation on X, and ρ : E → (0,∞) is a Borel cocycle. Then the
following are equivalent:

1. X /∈ Ibounded ∨ Idiscrete.

2. There is a ρ-invariant measure of type III.

Proof. The E-saturation of a set A ⊆ X is given by

[A]E = {x ∈ X : ∃y ∈ A (xEy)}.

In §3 of Miller [4], it is shown that Idiscrete is closed under E-saturation.
While we could get away with just this, it seems worth noting the following:

Lemma 11 Ibounded is closed under E-saturation.

Proof. It is enough to show that the E-saturation of every ρ-bounded
Borel set is in Ibounded. Towards this end, suppose that A ⊆ X is a ρ-
bounded Borel set, and note that the sets

An = {x ∈ X : ∃y ∈ A (1/n ≤ ρ(y, x) ≤ n)}

are ρ-bounded and cover [A]E, thus [A]E ∈ Ibounded. a

To see ¬(1) ⇒ ¬(2), suppose that X ∈ Ibounded ∨ Idiscrete, and note that
Lemma 11 ensures the existence of an E-invariant Borel set B ∈ Idiscrete such
that X \ B ∈ Ibounded. Theorem 8 ensures that there are no ρ|B-invariant
measures of types II or III, and Corollary 6 and Proposition 9 ensure that
there are no ρ|(X \B)-invariant measures of type III.

It remains to show (1) ⇒ (2). Roughly speaking, we will produce an
embedding of a specific sort of cocycle into ρ, and then push an appropriate
measure through this embedding in order to obtain the measure we desire.
So that we can motivate better the sort of embedding we will produce, we
describe first a family of measures of type III which contains the measure
that we shall push forward.

For k ∈ Z+, let µk be the probability measure on {0, . . . , k} given by

µk({i}) =

{
1/2 if i = 0,

1/2k otherwise.
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For k = 〈kn〉n∈N in (Z+)N, set Xk =
∏

n∈N{0, . . . , kn}, define µk on Xk by
µk =

∏
n∈N µkn , and define Ek on Xk by

αEkβ ⇔ ∃n ∈ N ∀m ≥ n (α(m) = β(m)).

Set ρk(i, j) = µk({i})/µk({j}), and define ρk : Ek → (0,∞) by

ρk(α, β) =
∏
n∈N

ρkn(α(n), β(n)).

It follows from Proposition 2.4 of Miller [4] that µk is ρk-invariant.

Lemma 12 If lim supn→∞ kn = ∞, then (Xk, Ek, µk) is of type III.

Proof. It is clear that µk is atomless, and it follows from the analog
of the Lebesgue density theorem in Xk (see §2 of Miller [4]) that µk is Ek-
ergodic. Suppose, towards a contradiction, that there is an Ek-invariant,
σ-finite measure µ ∼ µk. Fix a Borel function w : Xk → (0,∞) such that
µk =

∫
w dµ, and note that if ϕ : X → (0,∞) is Borel and f ∈ [Ek], then∫
ϕ(α) df∗µk(α) =

∫
ϕ(f(α)) dµk(α)

=

∫
ϕ(f(α))w(α) dµ(α)

=

∫
ϕ(f(α))(w(α)/w(f(α)))w(f(α)) dµ(α)

=

∫
ϕ(α)(w(f−1(α))/w(α))w(α) dµ(α)

=

∫
ϕ(α)(w(f−1(α))/w(α)) dµk(α).

We can therefore assume that ρk(α, β) = w(α)/w(β).
Fix 0 < ε < 1 sufficiently small that the set B = w−1([ε, 1/ε]) is of µk-

measure strictly greater than 1/2. Fix n ∈ N such that kn > 1/ε2, and for
each i ≤ kn, define fi ∈ [Ek] by

[fi(α)](j) =


0 if j = n and α(n) = i,
i if j = n and α(n) = 0,

α(j) otherwise.
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Let A = {α ∈ Xk : α(n) = 0}, and note that if α ∈ A and i ∈ {1, . . . , kn},
then ρk(α, fi(α)) = ρkn(0, i) = kn > 1/ε2. In particular, if α ∈ A ∩ B, then
none of f1(α), . . . , fkn(α) are in B. This, in turn, implies that∑

i≤kn

χB(fi(α))ρk(fi(α), α) ≤ 1

2

∑
i≤kn

ρk(fi(α), α),

for all α ∈ A. It now follows that

µk(B) =
∑
i≤kn

µk(fi(A) ∩B)

=
∑
i≤kn

µk(fi(A ∩ f−1
i (B)))

=
∑
i≤kn

∫
A∩f−1

i (B)

ρk(fi(α), α) dµk(α)

=

∫
A

∑
i≤kn

χB(fi(α))ρk(fi(α), α) dµk(α)

≤ 1

2

∫
A

∑
i≤kn

ρk(fi(α), α) dµk(α)

=
1

2

∑
i≤kn

µk(fi(A))

=
1

2
,

which is the desired contradiction. a

An ε-embedding of ρk into ρ is an embedding π : Xk → X of Ek into
E such that ∀αEkβ (ρk(α, β)/(1 + ε) ≤ ρ(π(α), π(β)) ≤ ρk(α, β)(1 + ε)).
We will complete the proof of Theorem 10 by showing first the following
descriptive strengthening:

Theorem 13 Suppose that X is a Polish space, E is a countable Borel
equivalence relation on X, ρ : E → (0,∞) is a Borel cocycle, and ε > 0.
Then the following are equivalent:

1. X /∈ Ibounded ∨ Idiscrete.
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2. There is a continuous ε-embedding of ρk into ρ, for some k = 〈kn〉n∈N
such that limn→∞ kn = ∞.

Proof. In order to see that ¬(1) ⇒ ¬(2) suppose, towards a contradic-
tion, that both ¬(1) and (2) hold. Note that pre-images under ε-embeddings
preserve the bounded and discrete σ-ideals, so that the join of the bounded
and discrete σ-ideals corresponding to ρk trivializes. However, Lemma 12
implies that µk is a ρk-invariant measure of type III, thus (2) ⇒ (1) of
Theorem 10 implies that the the join of the bounded and discrete σ-ideals
corresponding to ρk does not trivialize, which is the desired contradiction.

It remains to show (1) ⇒ (2). By Theorem 1 of Feldman-Moore [2], there
is a countable group Γ ≤ [E] such that E = EX

Γ . By change of topology
results (see, for example, §13 of Kechris [3]), there is a finer zero-dimensional
Polish topology τ , compatible with the underlying Borel structure of X, with
respect to which Γ acts by homeomorphisms and each of the sets {x ∈ X :
k ≤ ρ(x, γ · x) < r} is open, where γ ∈ Γ, k ∈ Z+, and r ∈ (k,∞). Fix
εn > 0, for n ∈ N, such that∏

n∈N

(1 + εn) ≤ 1 + ε,

as well as finite, symmetric sets {1Γ} = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γ such that
Γ =

⋃
n∈N Γn. It will be convenient to set I = Ibounded ∨ Idiscrete for the

remainder of the proof.
We will recursively find τ -clopen sets Bn ⊆ X, kn ∈ Z+, and γn,k ∈ Γ, for

n ∈ N and k ≤ kn. Associated with these are the sets Xn =
∏

i<n{0, . . . , ki},
the group elements γs =

∏
i<n γi,s(i), for s ∈ Xn, and the sets

∆n = {γ−1
s γγt : γ ∈ Γn and s, t ∈ Xn}.

We will ensure that, for all n ∈ N, the following conditions are satisfied:

1. Bn 6∈ I.

2. kn ≥ n.

3. γn,0 = 1Γ.

4. ∀x ∈ Bn+1 ∀k ≤ kn (ρkn(0, k) ≤ ρ(x, γn,k · x) < ρkn(0, k)(1 + εn)).

5. ∀s ∈ Xn+1 (diam(γs(Bn+1)) ≤ 1/n).
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6. ∀j < k ≤ kn (∆nγn,j(Bn+1) ∩ γn,k(Bn+1) = ∅).

7. ∀k ≤ kn (γn,k(Bn+1) ⊆ Bn).

We begin by setting B0 = X. Suppose now that we have B0 ⊇ B1 ⊇ · · · ⊇
Bn, as well as ki and γi,k, for k ≤ ki and i < n. Set C0 = Bn.

Lemma 14 There is an I-positive, τ -open set C1 ⊆ C0, γn,1 ∈ Γ, and
kn ≥ n such that, for all x ∈ C1, the following conditions are satisfied:

(a) γn,1 · x ∈ C0 \∆n · x.

(b) ρkn(0, 1) ≤ ρ(x, γn,1 · x) < ρkn(0, 1)(1 + εn).

Proof. For each γ ∈ Γ and k ≥ max(n, 1/εn), define Cγ,k ⊆ C0 by

Cγ,k = {x ∈ C0 : γ · x ∈ C0 \∆n · x and k ≤ ρ(x, γ · x) < k + 1},

and set C = C0 \
⋃
{Cγ,k : γ ∈ Γ and k ≥ max(n, 1/εn)}.

Sublemma 15 C ∈ Ibounded.

Proof. Define w : C → [1,∞] by

w(x) = sup{ρ(x, y) : y ∈ C ∩ [x]E},

and given x ∈ C, note that if y ∈ C ∩ [x]E and ρ(x, y) ≥ max(n, 1/εn) + 1,
then y ∈ ∆n · x. In particular, it follows that ∀x ∈ C (w(x) < ∞), thus
C =

⋃
n∈Z+ w−1([1, n]). As each of the sets w−1([1, n]) is ρ-bounded, it

follows that C ∈ Ibounded. a

It follows that there exists γ ∈ Γ and k ≥ max(n, 1/εn) such that Cγ,k 6∈
I. Put C1 = Cγ,k, γn,1 = γ, and kn = k, and note that ρkn(0, 1) = kn and

ρkn(0, 1)(1 + εn) ≥ kn(1 + 1/kn) = kn + 1,

thus ∀x ∈ C1 (ρkn(0, 1) ≤ ρ(x, γn,1 · x) < ρkn(0, 1)(1 + εn)). a

Suppose now that 1 ≤ k < kn and we have found I-positive, τ -open sets
C0 ⊇ C1 ⊇ · · · ⊇ Ck and γn,0, γn,1, . . . , γn,k ∈ Γ. Set

∆n,k = {δγn,i : δ ∈ ∆n and i ≤ k}.
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Lemma 16 There is an I-positive, τ -open set Ck+1 ⊆ Ck and γn,k+1 ∈ Γ
such that, for all x ∈ Ck+1, the following conditions are satisfied:

(a) γn,k+1 · x ∈ γn,k(Ck) \∆n,k · x.

(b) ρkn(0, k + 1) ≤ ρ(x, γn,k+1 · x) < ρkn(0, k + 1)(1 + εn).

Proof. For each γ ∈ Γ, let Dγ be the set of x ∈ γn,k(Ck) such that

γγ−1
n,k · x ∈ γn,k(Ck) \∆n,kγ

−1
n,k · x and kn ≤ ρ(γ−1

n,k · x, γγ−1
n,k · x) < kn(1 + εn),

and set D = γn,k(Ck) \
⋃

γ∈Γ Dγ.

Sublemma 17 D ∈ Idiscrete.

Proof. Define F ⊆ E by

xFy ⇔ (xEy and ρ(x, y) = 1).

Given x ∈ D, note that kn ≤ ρ(γ−1
n,k ·x, x) < kn(1 + εn), so there exists δ > 0

such that if y ∈ D ∩ [x]E and 1 ≤ ρ(x, y) < 1 + δ, then y ∈ ∆n,kγ
−1
n,k · x. In

particular, it follows that every equivalence class of F |D is of cardinality at
most |∆n,k|, hence there are Borel partial transversals D′

i of F , for i < |∆n,k|,
whose union is D. For each i < |∆n,k| and j ∈ N, let D′

i,j be the set of all
x ∈ D′

i such that

∀y ∈ D′
i ∩ [x]E (x = y or ρ(x, y) ≥ 1 + 1/j or ρ(y, x) ≥ 1 + 1/j).

These are clearly ρ-discrete Borel sets which cover D, thus D ∈ Idiscrete. a

It now follows that there exists γ ∈ Γ such that the set Dγ is I-positive.
Put Ck+1 = γ−1

n,k(Dγ) and γn,k+1 = γ, and observe that ρkn(0, k + 1) = kn,
thus ∀x ∈ Ck+1 (ρkn(0, k + 1) ≤ ρ(x, γn,k+1 · x) < ρkn(0, k + 1)(1 + εn)). a

This completes the description of C0, C1, . . . , Ckn and γn,0, γn,1, . . . , γn,kn .
As Ckn is the union of countably many τ -clopen sets D ⊆ Ckn which satisfy
the analogs of conditions (5) and (6) in which Bn+1 is replaced with D, it
follows that there is an I-positive, τ -clopen set Bn+1 ⊆ Ckn which satisfies
conditions (1) – (7).

This completes the recursive construction. For each s ∈ Xn, set As =
γs(Bn). Put k = 〈kn〉n∈N, and note that for each α ∈ Xk, conditions (5)
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and (7) ensure that Aα(0), Aα(0)α(1), . . . is a decreasing sequence of clopen
sets with vanishing diameter. It follows that their intersection consists of
a single point. Let π(α) denote this point. By conditions (5) and (6), the
function π : Xk → X is a continuous injection.

To see αEkβ ⇒ π(α)Eπ(β), it is enough to observe the following:

Lemma 18 If n ∈ N, s ∈ Xn, and sα ∈ Xk, then π(sα) = γs · π(0nα).

Proof. Simply observe that

{π(sα)} =
⋂
i≥n

A(sα)|i

=
⋂
i∈N

γsγ0n(α|i)(Bi+n)

= γs

(⋂
i∈N

γ0n(α|i)(Bi+n)

)

= γs

(⋂
i≥n

A0n(α|i)

)
= {γs · π(0nα)},

thus π(sα) = γs · π(0nα). a

To see (α, β) 6∈ Ek ⇒ (π(α), π(β)) 6∈ E, it is enough check the following:

Lemma 19 If α(n) 6= β(n), then ∀γ ∈ Γn (γ · π(α) 6= π(β)).

Proof. Suppose, towards a contradiction, that there exists γ ∈ Γn with
γ · π(α) = π(β). By reversing the roles of α and β if necessary, we can
assume that α(n) < β(n). Set s = α|n and t = β|n, and put

x = γ−1
n,α(n)γ

−1
s · π(α) and y = γ−1

n,β(n)γ
−1
t · π(β),

noting that these are both elements of Bn+1. As γγsγn,α(n) ·x = γtγn,β(n) · y,
it follows that γ−1

t γγsγn,α(n) · x = γn,β(n) · y, thus

∆nγn,α(n)(Bn+1) ∩ γn,β(n)(Bn+1) 6= ∅,

which contradicts condition (6). a
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It only remains to check that if αEkβ, then

ρk(α, β)/(1 + ε) ≤ ρ(π(α), π(β)) ≤ ρk(α, β)(1 + ε).(†)

Towards this end, suppose that αEkβ, fix n ∈ N such that ∀m > n (α(m) =
β(m)), put x = π(α) and y = π(β), and set s = α(0)α(1) . . . α(n) and
t = β(0)β(1) . . . β(n), noting that γ−1

s · x = γ−1
t · y, by Lemma 18. Put

δ0 = 1Γ, and for i < n, set δi+1 = γ−1
i,s(i)δi. Then

ρ(γ−1
s · x, x) = ρ(γ−1

n,s(n) · · · γ
−1
0,s(0) · x, x) =

∏
i≤n

ρ(γ−1
i,s(i)δi · x, δi · x),

thus condition (4) ensures that∏
i≤n

ρki
(0, s(i)) ≤ ρ(γ−1

s · x, x) <
∏
i≤n

ρki
(0, s(i))(1 + εi).

An identical argument shows that∏
i≤n

ρki
(0, t(i)) ≤ ρ(γ−1

t · y, y) <
∏
i≤n

ρki
(0, t(i))(1 + εi),

and since ρ(x, y) = ρ(γ−1
t · y, y)/ρ(γ−1

s · x, x), it follows that∏
i≤n

ρki
(0, t(i))/ρki

(0, s(i))(1 + εi) ≤ ρ(x, y)

≤
∏
i≤n

ρki
(0, t(i))(1 + εi)/ρki

(0, s(i)).

As
∏

i≤n ρki
(0, t(i))/ρki

(0, s(i)) =
∏

i≤n ρki
(s(i), t(i)) = ρk(α, β), we obtain

ρk(α, β)/
∏
i≤n

(1 + εi) ≤ ρ(x, y) ≤ ρk(α, β)
∏
i≤n

(1 + εi),

and (†) follows. a

We can now complete the proof of (1) ⇒ (2) of Theorem 10. Fix ε > 0.
By Theorem 13, there is a continuous ε-embedding π : Xk → X of ρk into
ρ, for some k ∈ NN such that limn→∞ kn = ∞. It follows from Lemma 12
that µk is of type III, thus so too is the measure π∗µk on π(Xk). As the
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cocycle π∗ρk/ρ|(E|π(Xk)) is bounded, it follows from Proposition 9 that
the cocycles π∗ρk and ρ|(E|π(Xk)) are cohomologous, thus Proposition 5
ensures that there is a ρ|(E|π(Xk))-invariant, σ-finite measure µ ∼ π∗µk.
By Theorem 1 of Feldman-Moore [2], there is a countable group of Borel
automorphisms which generates E, and using this, we can easily extend µ
to a ρ-invariant, σ-finite measure on X of type III. a

With this final dichotomy result in hand, we can finally prove:

Theorem 20 Suppose that X is a Polish space, E is a countable Borel
equivalence relation on X, and ρ : E → (0,∞) is a Borel cocycle. Then the
following are equivalent:

1. ρ is a coboundary.

2. For every σ-finite measure µ on X, the following are equivalent:

(a) There is a σ-finite, E-invariant measure equivalent to µ.

(b) There is a σ-finite, ρ-invariant measure equivalent to µ.

Proof. As Corollary 6 gives (1) ⇒ (2), it is enough to show (2) ⇒ (1).
Towards this end, suppose that condition (2) holds, so that there are no
ρ-invariant, σ-finite measures of type III, which by Theorem 10 implies that
X ∈ Ibounded ∨ Idiscrete. By Lemma 11, there is an E-invariant Borel set
B ∈ Idiscrete such that X \ B ∈ Ibounded. Theorem 8 ensures that there are
no atomless, E|B-ergodic, ρ|B-invariant, σ-finite measures, and condition
(2) then implies that there are no atomless, E|B-ergodic, E|B-invariant, σ-
finite measures. It then follows from Theorem 7 that B ∈ Ismooth, and since
Ismooth ⊆ Ibounded, it follows that X ∈ Ibounded, and Proposition 9 finally
implies that ρ is a Borel coboundary. a
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