ON THE EXISTENCE OF COCYCLE-INVARIANT BOREL PROBABILITY MEASURES

BENJAMIN D. MILLER

ABSTRACT. We show that a natural generalization of compressibility is the sole obstruction to the existence of a cocycle-invariant Borel probability measure.

Introduction

Suppose that X is a standard Borel space and $T: X \to X$ is a Borel automorphism of X. A Borel measure μ on X is T-invariant if $\mu(T(B)) = \mu(B)$ for all Borel sets $B \subseteq X$. The characterization of the class of Borel automorphisms of standard Borel spaces admitting an invariant Borel probability measure is a fundamental problem going back to Hopf (see [Hop32]).

A compression of an equivalence relation E on X is an injection $\phi \colon X \to X$ sending each E-class into a proper subset of itself. Building on work of Murray-von Neumann (see [MVN36]), Nadkarni has shown that the existence of a Borel compression of the orbit equivalence relation E_T^X induced by T is the sole obstruction to the existence of a T-invariant Borel probability measure (see [Nad90]).

Suppose that E is a Borel equivalence relation on X that is countable, in the sense that all of its equivalence classes are countable. A Borel measure μ on X is E-invariant if it is T-invariant for all Borel automorphisms $T: X \to X$ whose graphs are contained in E. It is easy to see that a Borel measure is T-invariant if and only if it is E_T^X -invariant. Becker-Kechris have pointed out that Nadkarni's argument yields the more general fact that the existence of a Borel compression of E is the sole obstruction to the existence of an E-invariant Borel probability measure (see [BK96, Theorem 4.3.1]).

An equivalence relation is aperiodic if all of its classes are infinite. A set $Y \subseteq X$ is E-complete if it intersects every E-class in at least one point, and a set $Y \subseteq X$ is a partial transversal of E if it intersects

²⁰¹⁰ Mathematics Subject Classification. Primary 03E15, 28A05.

Key words and phrases. Cocycle, compression, invariant measure.

The author was supported in part by FWF Grants P28153 and P29999.

every E-class in at most one point. A transversal of E is an E-complete partial transversal of E. The Lusin-Novikov uniformization theorem (see, for example, [Kec95, Theorem 18.10]) ensures that there is a Borel transversal of E if and only if X is the union of countably-many Borel partial transversals of E. We say that E is smooth if it satisfies these equivalent conditions. Dougherty-Jackson-Kechris have pointed out that the existence of a Borel compression of E is equivalent to the existence of an aperiodic smooth Borel subequivalence relation of E (see [DJK94, Proposition 2.5]), thereby obtaining another characterization of the class of countable Borel equivalence relations on standard Borel spaces admitting an invariant Borel probability measure.

A substantially weaker notion than E-invariance is that of E-quasiinvariance, where one asks that $\mu(T(B)) = 0 \iff \mu(B) = 0$ for all Borel sets $B \subseteq X$ and Borel automorphisms $T: X \to X$ whose graphs are contained in E. Given a group Γ , we say that a function $\rho \colon E \to \Gamma$ is a cocycle if $\rho(x,z) = \rho(x,y)\rho(y,z)$ whenever $x \to y \to z$. Given a Borel cocycle $\rho \colon E \to (0, \infty)$, we say that a Borel measure μ on X is $\rho\text{-}invariant$ if $\mu(T(B)) = \int_{B} \rho(T(x),x) \ d\mu(x)$ for all Borel sets $B \subseteq X$ and Borel automorphisms $T: X \to X$ whose graphs are contained in E. Clearly E-invariance is equivalent to invariance with respect to the constant cocycle, whereas the Radon-Nikodym Theorem (see, for example, [Kec95, §17.A]) and the Feldman-Moore observation that countable Borel equivalence relations on standard Borel spaces are orbit equivalence relations induced by Borel actions of countable groups (see [FM77, Theorem 1]) ensure that E-quasi-invariance is equivalent to invariance with respect to some Borel cocycle $\rho \colon E \to (0, \infty)$ (see, for example, [KM04, §8]). A characterization of the class of Borel cocycles $\rho \colon E \to (0, \infty)$ admitting an invariant Borel probability measure was provided in [Mil08a]. Here we investigate more natural generalizations of the characterizations mentioned above.

In §1, we introduce the direct generalizations of aperiodicity and compressibility to cocycles that come from viewing ρ as endowing each E-class with a notion of relative size. We also introduce the generalization of smoothness to cocycles that comes from the Glimm-Effros dichotomy. We note that, unfortunately, even when E is smooth, there are Borel cocycles on E admitting neither a compression nor an invariant Borel probability measure. In order to bypass this obstacle, we introduce the quotient of ρ by a finite subequivalence relation of E. Generalizing the observation of Dougherty-Jackson-Kechris, we show that the existence of an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E is equivalent to the existence of a Borel subequivalence relation of E on which ρ is aperiodic

and smooth. We also note that, at least when ρ is smooth, the existence of an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E is the sole obstacle to the existence of a ρ -invariant Borel probability measure.

In $\S 2$, we introduce *Borel coboundaries*, a natural class of particularly simple Borel cocycles containing the constant cocycles. We note that, unfortunately, there are Borel coboundaries admitting neither an injective Borel compression of the quotient by a finite Borel subequivalence relation of E nor an invariant Borel probability measure. In order to bypass this new obstacle, we then drop the assumption of injectivity, and combine the Becker-Kechris generalization of Nadkarni's theorem, the Dougherty-Jackson-Kechris characterization of the existence of Borel compressions, and an approximation lemma to generalize Nadkarni's theorem to Borel coboundaries.

Theorem 1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel coboundary. Then exactly one of the following holds:

- (1) There is a finite-to-one Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.
- (2) There is a ρ -invariant Borel probability measure.

In §3, we no longer restrict our attention to Borel coboundaries. Unfortunately, the direct generalization of Theorem 1 to Borel cocycles remains open. In order to bypass this final obstacle, we consider the weakening of the notion of a compression of the quotient of ρ by a finite subequivalence relation F of E obtained by only taking the quotient in the range, which we refer to as a compression of ρ over F. By augmenting the main argument of [Mil08a] with an additional approximation lemma, we generalize Nadkarni's theorem to Borel cocycles.

Theorem 2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then exactly one of the following holds:

- (1) There is a finite-to-one Borel compression of ρ over a finite Borel subequivalence relation of E.
- (2) There is a ρ -invariant Borel probability measure.

1. Smooth cocycles

One can think of a cocycle $\rho \colon E \to (0, \infty)$ as assigning a notion of relative size to each E-class C, with the ρ -size of a point $y \in C$ relative to a point $z \in C$ being $\rho(y, z)$. More generally, the ρ -size of a set $Y \subseteq C$ relative to z is given by $|Y|_z^\rho = \sum_{y \in Y} \rho(y, z)$. We say that

Y is ρ -infinite if this quantity is infinite. As the definition of cocycle ensures that $|Y|_{z'}^{\rho} = |Y|_{z}^{\rho} \rho(z, z')$ for all $z' \in C$, it follows that the notion of being ρ -infinite does not depend on the choice of $z \in C$. It also follows that the ρ -size of Y relative to a non-empty set $Z \subseteq C$, given by $|Y|_{Z}^{\rho} = |Y|_{z}^{\rho}/|Z|_{z}^{\rho}$, does not depend on the choice of $z \in C$.

We say that a cocycle $\rho: E \to (0, \infty)$ is aperiodic if every E-class is ρ -infinite. Note that the aperiodicity of ρ trivially yields that of E. Conversely, when ρ is bounded, the aperiodicity of E yields that of ρ .

We say that a function $\phi \colon X \to X$ is a compression of ρ if the graph of ϕ is contained in E, $|\phi^{-1}(x)|_x^{\rho} \le 1$ for all $x \in X$, and the set $\{x \in X \mid |\phi^{-1}(x)|_x^{\rho} < 1\}$ is E-complete. Note that, when ρ is the constant cocycle, a function $\phi \colon X \to X$ is a compression of E if and only if it is a compression of ρ .

Proposition 1.1. Suppose that X is a standard Borel space and E is an aperiodic smooth countable Borel equivalence relation on X. Then there is an aperiodic Borel cocycle $\rho \colon E \to (0, \infty)$ that does not admit a compression.

Proof. Fix a strictly decreasing sequence $(r_n)_{n\in\mathbb{N}}$ of positive real numbers for which $\sum_{n\in\mathbb{N}} r_n = \infty$. As E is both aperiodic and smooth, the Lusin-Novikov uniformization theorem yields a partition $(B_n)_{n\in\mathbb{N}}$ of X into Borel transversals of E. For each $x\in X$, let n(x) denote the unique natural number for which $x\in B_{n(x)}$, and define $\rho\colon E\to (0,\infty)$ by setting $\rho(x,y)=r_{n(x)}/r_{n(y)}$ whenever $x\to y$.

The fact that $\sum_{n\in\mathbb{N}} r_n = \infty$ ensures that ρ is aperiodic. To see that there is no compression of ρ , note that if $\phi \colon X \to X$ is a function such that the graph of ϕ is contained in E and $|\phi^{-1}(x)|_x^{\rho} \leq 1$ for all $x \in X$, then a straightforward induction on n(x), using the fact that $(r_n)_{n\in\mathbb{N}}$ is strictly decreasing, shows that $\phi(x) = x$ for all $x \in X$.

A digraph on X is an irreflexive set $G \subseteq X \times X$. Given such a digraph, we say that a set $Y \subseteq X$ is G-independent if $G \cap (Y \times Y) = \emptyset$. A Y-coloring of G is a function $c: X \to Y$ with the property that $c^{-1}(y)$ is G-independent for all $y \in Y$.

The vertical sections of a set $R \subseteq X \times Y$ are the sets of the form $R_x = \{y \in Y \mid (x,y) \in R\}$, where $x \in X$. When G is Borel, it follows from [KST99, Proposition 4.5] that there is a Borel N-coloring of G if and only if X is the union of countably-many Borel sets $B \subseteq X$ for which the vertical sections of $G \cap (B \times B)$ are finite.

We say that a Borel measure μ on X is E-ergodic if every E-invariant Borel set is μ -conull or μ -null. Given a Borel cocycle $\rho \colon E \to \Gamma$ and a set $Z \subseteq \Gamma$, let G_Z^{ρ} denote the digraph on X with respect to which

distinct points x and y are related if and only if they are E-equivalent and $\rho(x,y) \in Z$. The Glimm-Effros dichotomy for countable Borel equivalence relations (see [Wei84]) ensures that E is smooth if and only if there is no atomless E-ergodic E-invariant σ -finite Borel measure. In [Mil08b], this was generalized to show that if $\rho \colon E \to (0,\infty)$ is a Borel cocycle, then there is an open neighborhood $U \subseteq (0,\infty)$ of 1 for which there is a Borel N-coloring of G_U^ρ if and only if there is no atomless E-ergodic ρ -invariant σ -finite Borel measure. Consequently, we say that a Borel cocycle $\rho \colon E \to (0,\infty)$ is smooth if it satisfies these equivalent conditions. Note that the smoothness of E trivially yields that of E-conversely, when E is bounded, the smoothness of E ensures that E is the union of countably-many Borel sets whose intersection with each E-class is finite, thus E is smooth.

We say that a set $Y \subseteq X$ is ρ -lacunary if it is G_U^{ρ} -independent for some open neighborhood $U \subseteq (0, \infty)$ of 1.

Proposition 1.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, Γ is a Polish group, and $\rho \colon E \to \Gamma$ is a Borel cocycle. If there is an open neighborhood $U \subseteq \Gamma$ of 1_{Γ} for which there is a Borel \mathbb{N} -coloring of G_U^{ρ} , then there is a Borel \mathbb{N} -coloring of G_K^{ρ} for all compact sets $K \subseteq \Gamma$.

Proof. Given a digraph G on X, we say that a set $Y \subseteq X$ is a G-clique if all pairs of distinct points of Y are G-related. It is sufficient to show that if a set $Y \subseteq X$ does not contain an infinite G_U^{ρ} -clique, then the vertical sections of $G_K^{\rho} \cap (X \times Y)$ are finite. Towards this end, fix a non-empty open set $V \subseteq \Gamma$ with the property that $V^{-1}V \subseteq U$, as well as a finite sequence $(\gamma_i)_{i < n}$ of elements of Γ for which $K \subseteq \bigcup_{i < n} \gamma_i V$, and note that if $x \in X$, then $(G_K^{\rho})_x \subseteq \bigcup_{i < n} (G_{\gamma_i V}^{\rho})_x$, so we need only show that each $(G_{\gamma_i V}^{\rho})_x$ is a G_U^{ρ} -clique. But if i < n and $y, z \in (G_{\gamma_i V}^{\rho})_x$, then $\rho(y, z) = \rho(y, x)\rho(x, z) \in (\gamma_i V)^{-1}\gamma_i V = V^{-1}V \subseteq U$.

The following fact ensures that a Borel cocycle $\rho: E \to (0, \infty)$ is smooth if and only if there is an E-complete ρ -lacunary Borel set.

Proposition 1.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, Γ is a locally compact Polish group, $\rho \colon E \to \Gamma$ is a Borel cocycle, and $U \subseteq \Gamma$ is a pre-compact open neighborhood of 1_{Γ} . Then there is a Borel \mathbb{N} -coloring of G_U^{ρ} if and only if there is an E-complete G_U^{ρ} -independent Borel set.

Proof. If $c: X \to \mathbb{N}$ is a Borel \mathbb{N} -coloring of G_U^{ρ} , then set $A_n = c^{-1}(n)$ and $B_n = A_n \setminus \bigcup_{m < n} [A_m]_E$ for all $n \in \mathbb{N}$. As the Lusin-Novikov uniformization theorem ensures that the latter sets are Borel, it follows that their union is an E-complete G_U^{ρ} -independent Borel set.

Conversely, suppose that $B \subseteq X$ is an E-complete G_U^{ρ} -independent Borel set. The Lusin-Novikov uniformization theorem then yields Borel functions $\phi_n \colon B \to X$ such that $E \cap (B \times X) = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(\phi_n)$, from which it follows that there are such functions satisfying the additional constraint that the sets $K_n = \rho(\operatorname{graph}(\phi_n))$ are pre-compact. As Proposition 1.2 yields Borel \mathbb{N} -colorings of $G_{K_nUK_n^{-1}}^{\rho} \cap (B \times B)$, and the Lusin-Novikov uniformization theorem ensures that ϕ_n sends $G_{K_nUK_n^{-1}}^{\rho}$ -independent Borel sets to G_U^{ρ} -independent Borel sets, there are Borel \mathbb{N} -colorings of $G_U^{\rho} \cap (\phi_n(B) \times \phi_n(B))$, and therefore of G_U^{ρ} . \boxtimes

Remark 1.4. Propositions 1.2 and 1.3 easily imply that a Borel cocycle $\rho \colon E \to (0, \infty)$ is smooth if and only if X is the union of countablymany ρ -lacunary Borel sets.

We say that a function $\phi \colon X \to X$ is strictly ρ -increasing if its graph is contained in E and $|\phi^{-1}(x)|_x^{\rho} < 1$ for all $x \in X$.

Proposition 1.5. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho \colon E \to (0, \infty)$ is a smooth Borel cocycle. Then there is an E-invariant Borel set $B \subseteq X$ for which $E \upharpoonright \sim B$ is smooth and there is a strictly $(\rho \upharpoonright (E \upharpoonright B))$ -increasing Borel automorphism.

Proof. Fix a partition $(B_n)_{n\in\mathbb{N}}$ of X into ρ -lacunary Borel sets. For each $x\in X$, let n(x) be the unique natural number for which $x\in B_{n(x)}$. Let \preceq be the partial order on X with respect to which $x\preceq y$ if and only if $x \to B$, n(x) = n(y), and $n(x,y) \leq 1$, and let B be the set of $x\in X$ such that for all $n\in\mathbb{N}$, either $B_n\cap [x]_E=\emptyset$ or $x\in X$ is smooth, and the $x\in X$ is smooth, and the $x\in X$ is smooth, and the $x\in X$ is a strictly $x\in X$ is smooth, and the $x\in X$ is a smooth, and the $x\in X$ is a smooth, and the $x\in X$ is a smooth in $x\in X$ is a smooth, and the $x\in X$ is a smooth in $x\in X$ is a smooth.

Given a cocycle $\rho \colon E \to (0, \infty)$ and a finite subequivalence relation F of E, define $\rho/F \colon E/F \to (0, \infty)$ by $(\rho/F)([x]_F, [y]_F) = |[x]_F|_{[y]_F}^{\rho}$. The Lusin-Novikov uniformization theorem ensures that if F is Borel, then X/F is standard Borel, so that E/F is a countable Borel equivalence relation on a standard Borel space. Moreover, if ρ is Borel, then ρ/F is a Borel cocycle on E/F. The Lusin-Novikov uniformization theorem also implies that, when ρ is the constant cocycle, a Borel compression of ρ/F gives rise to a Borel compression of ρ . In spite of Proposition 1.1, such quotients allow us to generalize the fact that aperiodic smooth countable Borel equivalence relations admit Borel compressions.

Proposition 1.6. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is an

aperiodic smooth Borel cocycle. Then there is a finite Borel subequivalence relation F of E for which there is a strictly (ρ/F) -increasing Borel injection.

Proof. By Proposition 1.5, we can assume that E is smooth. As the aperiodicity of ρ yields that of E, there is a partition $(B_n)_{n\in\mathbb{N}}$ of X into Borel transversals of E. For each $x\in X$, let n(x) be the unique natural number with $x\in B_{n(x)}$, set $n_i(x)=i$ for all i<2, recursively define $n_{i+2}(x)$ to be the least natural number such that the ρ -size of the set $\{y\in [x]_E\mid n_{i+1}(x)\leq n(y)< n_{i+2}(x)\}$ relative to the set $\{y\in [x]_E\mid n_i(x)\leq n(y)< n_{i+1}(x)\}$ is strictly greater than one for all $i\in\mathbb{N}$, and let i(x) be the unique natural number with the property that $n_{i(x)}(x)\leq n(x)< n_{i(x)+1}(x)$. Let F be the subequivalence relation of E with respect to which two E-equivalent points are F-equivalent if and only if i(x)=i(y). Then the function $\phi\colon X/F\to X/F$, given by $\phi([x]_F)=\{y\in [x]_E\mid i(y)=i(x)+1\}$, is a strictly (ρ/F) -increasing Borel injection.

The following fact yields an equivalent form of ρ -invariance that will prove useful when considering Borel injections.

Proposition 1.7. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho \colon E \to (0, \infty)$ is a Borel cocycle, and μ is a ρ -invariant Borel measure. Then $\mu(T(B)) = \int_{B} \rho(T(x), x) \ d\mu(x)$ for all Borel sets $B \subseteq X$ and Borel injections $T \colon B \to X$ whose graphs are contained in E.

Proof. Fix a countable group $\Gamma = \{\gamma_n \mid n \in \mathbb{N}\}$ of Borel automorphisms of X whose induced orbit equivalence relation is E, recursively define $B_n = \{x \in B \setminus \bigcup_{m < n} B_m \mid T(x) = \gamma_n \cdot x\}$ for all $n \in \mathbb{N}$, and note that

$$\mu(T(B)) = \sum_{n \in \mathbb{N}} \mu(\gamma_n(B_n))$$

$$= \sum_{n \in \mathbb{N}} \int_{B_n} \rho(\gamma_n \cdot x, x) \ d\mu(x)$$

$$= \int_{B} \rho(T(x), x) \ d\mu(x)$$

by ρ -invariance.

 \boxtimes

The following fact yields an equivalent form of ρ -invariance that will prove useful when considering Borel functions.

Proposition 1.8. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and μ is a ρ -invariant Borel measure. Then $\mu(\phi^{-1}(B)) =$

 $\int_{B} |\phi^{-1}(x)|_{x}^{\rho} d\mu(x) \text{ for all Borel sets } B \subseteq X \text{ and Borel functions } \phi \colon X \to X \text{ whose graphs are contained in } E.$

Proof. By the Lusin-Novikov uniformization theorem, there are Borel sets $B_n \subseteq B$ and Borel injections $T_n \colon B_n \to X$ with the property that $(\operatorname{graph}(T_n))_{n \in \mathbb{N}}$ partitions $\operatorname{graph}(\phi^{-1}) \cap (B \times X)$. Then

$$\int_{B} |\phi^{-1}(x)|_{x}^{\rho} d\mu(x) = \sum_{n \in \mathbb{N}} \int_{B_{n}} \rho(T_{n}(x), x) d\mu(x) = \mu(\phi^{-1}(B))$$

 \boxtimes

by Proposition 1.7.

Much as before, we say that a function $\phi \colon X \to X$ is a compression of ρ over a finite subequivalence relation F of E if the graph of ϕ is contained in E, $|\phi^{-1}([x]_F)|_{[x]_F}^{\rho} \leq 1$ for all $x \in X$, and the set $\{x \in X \mid |\phi^{-1}([x]_F)|_{[x]_F}^{\rho} < 1\}$ is E-complete. The Lusin-Novikov uniformization theorem ensures that every Borel compression of the quotient of ρ by a finite Borel subequivalence relation F of E gives rise to a Borel compression of ρ over F. It also implies that, when ρ is the constant cocycle, a Borel compression of ρ over a finite Borel subequivalence relation of E gives rise to a Borel compression of ρ .

Proposition 1.9. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel cocycle, and there is a Borel compression $\phi: X \to X$ of ρ over a finite Borel subequivalence relation F of E. Then there is no ρ -invariant Borel probability measure.

Proof. By the Lusin-Novikov uniformization theorem, there exist a Borel transversal $B \subseteq X$ of F, Borel sets $B_n \subseteq B$, and Borel injections $T_n \colon B_n \to X$ for which $(\operatorname{graph}(T_n))_{n \in \mathbb{N}}$ partitions $F \cap (B \times X)$. If μ is a ρ -invariant Borel measure, then Proposition 1.7 ensures that

$$\mu(X) = \sum_{n \in \mathbb{N}} \mu(T_n(B_n))$$

$$= \sum_{n \in \mathbb{N}} \int_{B_n} \rho(T_n(x), x) \ d\mu(x)$$

$$= \int_{B} |[x]_F|_x^{\rho} \ d\mu(x),$$

whereas Propositions 1.7 and 1.8 imply that

$$\mu(X) = \int |\phi^{-1}(x)|_x^{\rho} d\mu(x)$$

$$= \sum_{n \in \mathbb{N}} \int_{T_n(B_n)} |\phi^{-1}(x)|_x^{\rho} d\mu(x)$$

$$= \sum_{n \in \mathbb{N}} \int_{B_n} |(\phi^{-1} \circ T_n)(x)|_{T_n(x)}^{\rho} d((T_n^{-1})_*(\mu))(x)$$

$$= \sum_{n \in \mathbb{N}} \int_{B_n} |(\phi^{-1} \circ T_n)(x)|_x^{\rho} d\mu(x)$$

$$= \int_{B} |\phi^{-1}([x]_F)|_x^{\rho} d\mu(x).$$

As the set $A = \{x \in B \mid |\phi^{-1}([x]_F)|_x^{\rho} < |[x]_F|_x^{\rho}\}$ is E-complete, it follows that if $\mu(X) > 0$, then $\mu(A) > 0$. As $|\phi^{-1}([x]_F)|_x^{\rho} \le |[x]_F|_x^{\rho}$ for all $x \in B$, it follows that if $\mu(A) > 0$, then $\mu(X) = \infty$.

We next note the useful fact that smoothness is invariant under quotients by finite Borel subequivalence relations of E.

Proposition 1.10. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho \colon E \to (0, \infty)$ is a Borel cocycle, and F is a finite Borel subequivalence relation of E. Then ρ is smooth if and only if ρ/F is smooth.

Proof. By partitioning X into countably-many F-invariant Borel sets, we can assume that there is a real number r>1 with $|[x]_F|_x^{\rho} \leq r$ for all $x \in X$. As $[Y]_F/F$ is $G_{(1/r,r)}^{\rho/F}$ -independent for all $G_{(1/r^2,r^2)}^{\rho}$ -independent sets $Y \subseteq X$, the smoothness of ρ yields that of ρ/F . As every F-invariant set $Y \subseteq X$ for which Y/F is $G_{(1/r^2,r^2)}^{\rho/F}$ -independent is itself $G_{(1/r,r)}^{\rho} \setminus F$)-independent, the smoothness of ρ/F yields that of ρ . \boxtimes

Generalizing the Dougherty-Jackson-Kechris observation that there is a Borel compression of E if and only if there is an aperiodic smooth Borel subequivalence relation of E, we have the following.

Proposition 1.11. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then the following are equivalent:

- (1) There is an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.
- (2) There is a Borel subequivalence relation of E on which ρ is aperiodic and smooth.

(3) There exist an E-invariant Borel set $B \subseteq X$ and a Borel subequivalence relation F of E such that $F \upharpoonright \sim B$ is smooth, $\rho \upharpoonright (F \upharpoonright \sim B)$ is aperiodic, and there is a strictly $(\rho \upharpoonright (F \upharpoonright B))$ -increasing Borel automorphism.

Proof. To see $(1) \Longrightarrow (2)$, observe that by Proposition 1.10, we can assume that there is an injective Borel compression $\phi \colon X \to X$ of ρ . Set $A = \{x \in X \mid |\phi^{-1}(x)|_x^{\rho} < 1\}$, and let F be the orbit equivalence relation generated by ϕ . As the sets $A_r = \{x \in X \mid |\phi^{-1}(x)|_x^{\rho} < r\}$ are $(\rho \upharpoonright F)$ -lacunary for all r < 1, it follows that $\rho \upharpoonright (F \upharpoonright A)$ is smooth, thus $\rho \upharpoonright (F \upharpoonright A)_F$ is aperiodic and smooth. By the Lusin-Novikov uniformization theorem, there is a Borel extension $\psi \colon X \to [A]_F$ of the identity function on $[A]_F$ whose graph is contained in E, in which case the restriction of ρ to the pullback of $F \upharpoonright [A]_F$ through ψ is aperiodic and smooth.

To see $(2) \Longrightarrow (3)$, note that if condition (2) holds, then Proposition 1.5 immediately yields the weakening of condition (3) in which the set B need not be E-invariant. To see that this weakening yields condition (3) itself, note that if $B' \subseteq X$ is a Borel set and F' is a smooth Borel subequivalence relation of $E \upharpoonright B'$ for which $\rho \upharpoonright F'$ is aperiodic, then the Lusin-Novikov uniformization theorem yields a Borel extension $\pi \colon [B']_E \to B'$ of the identity function on B' whose graph is contained in E, the subequivalence relation F'' of $E \upharpoonright [B']_E$ given by $x F'' y \iff \pi(x) F' \pi(y)$ is smooth, and $\rho \upharpoonright F''$ is aperiodic.

It only remains to note that Proposition 1.6 yields (3) \implies (1).

We close this section by noting that, at least when ρ is smooth, the existence of an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E is the sole obstacle to the existence of a ρ -invariant Borel probability measure.

Proposition 1.12. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a smooth Borel cocycle. Then exactly one of the following holds:

- (1) There is an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.
- (2) There is a ρ -invariant Borel probability measure.

Proof. Proposition 1.9 ensures that conditions (1) and (2) are mutually exclusive. To see that at least one of them holds, note first that if ρ is aperiodic, then Proposition 1.6 yields a finite Borel subequivalence relation F of E for which there is a strictly (ρ/F) -increasing Borel injection. And if there is a ρ -finite equivalence class C of E, then the

Borel probability measure μ on X, given by $\mu(B) = |B \cap C|_C^{\rho}$ for all Borel sets $B \subseteq X$, is ρ -invariant.

2. Coboundaries

We say that a Borel cocycle $\rho: E \to (0, \infty)$ is a Borel coboundary if there is a Borel function $f: X \to (0, \infty)$ such that $\rho(x, y) = f(x)/f(y)$ for all $(x, y) \in E$. The following observation shows that, even for Borel coboundaries, the equivalent conditions of Proposition 1.11 do not characterize the non-existence of an invariant Borel probability measure.

Proposition 2.1. Suppose that X is a standard Borel space and E is an aperiodic countable Borel equivalence relation on X admitting an invariant Borel probability measure. Then there is a Borel coboundary $\rho \colon E \to (0, \infty)$ with the property that there is neither an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E nor a ρ -invariant Borel probability measure.

Proof. Set $B_0 = X$ and let $\iota_0 \colon B_0 \to B_0$ be the identity function. Recursively apply [KM04, Proposition 7.4] to obtain Borel sets $B_{n+1} \subseteq \iota_n(B_n)$ and Borel involutions $\iota_{n+1} \colon \iota_n(B_n) \to \iota_n(B_n)$ such that the graph of ι_{n+1} is contained in E and the sets B_{n+1} and $\iota_{n+1}(B_{n+1})$ partition $\iota_n(B_n)$ for all $n \in \mathbb{N}$. For each $x \in X$, let n(x) be the maximal natural number for which $x \in B_{n(x)}$, and set $f(x) = 2^{n(x)}$. Define $\rho \colon E \to (0, \infty)$ by setting $\rho(x, y) = f(x)/f(y)$ for all $(x, y) \in E$.

To see that there is no ρ -invariant Borel probability measure, note that if μ is a ρ -invariant Borel measure, then the fact that $\iota_{n+1}(B_{n+2})$ and $(\iota_{n+1} \circ \iota_{n+2})(B_{n+2})$ partition B_{n+1} for all $n \in \mathbb{N}$ ensures that

$$\mu(B_{n+1}) = \int_{B_{n+2}} \rho(\iota_{n+1}(x), x) + \rho((\iota_{n+1} \circ \iota_{n+2})(x), x) \ d\mu(x) = \mu(B_{n+2})$$

for all $n \in \mathbb{N}$, thus $\mu(X) \in \{0, \infty\}$.

Suppose, towards a contradiction, that there is an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E. Then Proposition 1.11 yields an E-invariant Borel set $A \subseteq X$ and a Borel subequivalence relation F of E such that $F \upharpoonright \sim A$ is smooth, $\rho \upharpoonright (F \upharpoonright \sim A)$ is aperiodic, and there is a strictly $(\rho \upharpoonright (F \upharpoonright A))$ -increasing Borel automorphism $\phi \colon A \to A$. Fix an E-invariant Borel probability measure μ . As $\iota_n(B_{n+1})$ and $(\iota_n \circ \iota_{n+1})(B_{n+1})$ partition B_n for all $n \in \mathbb{N}$, it follows that $\mu(B_n) = 2\mu(B_{n+1})$ for all $n \in \mathbb{N}$. As the aperiodicity of $\rho \upharpoonright (F \upharpoonright \sim A)$ yields that of $F \upharpoonright \sim A$, Propositions 1.6 and 1.9 imply that A is μ -conull, thus so too is $A \cap \bigcup_{n \in \mathbb{N}} B_{n+1}$. As the

definition of ρ ensures that $\phi(A \cap \bigcup_{n \in \mathbb{N}} B_{n+1}) \subseteq A \cap \bigcup_{n \in \mathbb{N}} B_{n+2}$, and the latter set has μ -measure 1/2, this contradicts E-invariance.

The following fact yields an equivalent of ρ -invariance that will prove useful when dealing with finite Borel subequivalence relations.

Proposition 2.2. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho \colon E \to (0, \infty)$ is a Borel cocycle, and μ is a ρ -invariant Borel measure on X. Then $\mu(B) = \int |B \cap [x]_F|_{[x]_F}^{\rho} d\mu(x)$ for all Borel sets $B \subseteq X$ and finite Borel subequivalence relations F of E.

Proof. Fix a Borel transversal $A \subseteq X$ of F, Borel sets $A_n \subseteq A$, and Borel injections $T_n \colon A_n \to X$ with the property that $(\operatorname{graph}(T_n))_{n \in \mathbb{N}}$ partitions $F \cap (A \times X)$, and observe that

$$\int |B \cap [x]_F|_{[x]_F}^{\rho} d\mu(x) = \sum_{n \in \mathbb{N}} \int_{T_n(A_n)} |B \cap [x]_F|_{[x]_F}^{\rho} d\mu(x)$$

$$= \sum_{n \in \mathbb{N}} \int_{A_n} |B \cap [x]_F|_{[x]_F}^{\rho} d((T_n^{-1})_*\mu)(x)$$

$$= \sum_{n \in \mathbb{N}} \int_{A_n} |B \cap [x]_F|_{[x]_F}^{\rho} \rho(T_n(x), x) d\mu(x)$$

$$= \int_{A} |B \cap [x]_F|_x^{\rho} d\mu(x)$$

$$= \sum_{n \in \mathbb{N}} \int_{A_n \cap T_n^{-1}(B)} \rho(T_n(x), x) d\mu(x)$$

$$= \sum_{n \in \mathbb{N}} \mu(T_n(A_n) \cap B)$$

$$= \mu(B)$$

by Proposition 1.7.

Given a Borel set $R \subseteq X \times X$ with countable vertical sections and a Borel function $\rho \colon R \to (0,\infty)$, we say that a Borel measure μ on X is ρ -invariant if $\mu(T(B)) = \int_B \rho(T(x),x) \ d\mu(x)$ for all Borel sets $B \subseteq X$ and Borel injections $T \colon B \to X$ whose graphs are contained in R^{-1} . The composition of sets $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ is given by $R \circ S = \{(x,z) \in X \times Z \mid \exists y \in Y \ x \ R \ y \ S \ z\}$. The Lusin-No-vikov uniformization theorem ensures that if R and S are Borel sets with countable vertical sections, then so too is their composition. The following fact will prove useful in verifying ρ -invariance.

 \boxtimes

Proposition 2.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $R, S \subseteq E$ are Borel, and $\rho \colon E \to (0, \infty)$ is a Borel cocycle. Then every $(\rho \upharpoonright (R \cup S))$ -invariant Borel measure μ is $(\rho \upharpoonright (R \circ S))$ -invariant.

Proof. Note first that if $B \subseteq X$ is a Borel set, $T_S : B \to X$ is a Borel injection whose graph is contained in S^{-1} , and $T_R : T_S(B) \to X$ is a Borel injection whose graph is contained in R^{-1} , then

$$\mu((T_R \circ T_S)(B)) = \int_{T_S(B)} \rho(T_R(x), x) \ d\mu(x)$$

$$= \int_B \rho((T_R \circ T_S)(x), T_S(x)) \ d((T_S^{-1})_*\mu)(x)$$

$$= \int_B \rho((T_R \circ T_S)(x), x) \ d\mu(x).$$

As the Lusin-Novikov uniformization theorem ensures that every Borel injection whose graph is contained in $(R \circ S)^{-1}$ can be decomposed into a disjoint union of countably-many Borel injections of the form $T_R \circ T_S$ as above, the proposition follows.

We say that Borel cocycles $\rho \colon E \to (0, \infty)$ and $\sigma \colon E \to (0, \infty)$ are Borel cohomologous if their ratio is a Borel coboundary. We say that a Borel function $f \colon X \to (0, \infty)$ witnesses that ρ and σ are Borel cohomologous if $f(x)/f(y) = \sigma(x,y)/\rho(x,y)$ for all $(x,y) \in E$.

Proposition 2.4. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $f: X \to (0, \infty)$ is a Borel function witnessing that Borel cocycles $\rho, \sigma: E \to (0, \infty)$ are Borel cohomologous, and μ is a ρ -invariant Borel measure. Then the Borel measure given by $\nu(B) = \int_B f \ d\mu$ is σ -invariant.

Proof. Simply observe that if $B \subseteq X$ is a Borel set and $T: X \to X$ is a Borel automorphism whose graph is contained in E, then

$$\nu(T(B)) = \int_{T(B)} f \ d\mu$$

$$= \int_{B} f \circ T \ d((T^{-1})_*\mu)$$

$$= \int_{B} (f \circ T)(x)\rho(T(x), x) \ d\mu(x)$$

$$= \int_{B} f(x)\sigma(T(x), x) \ d\mu(x)$$

$$= \int_{B} \sigma(T(x), x) \ d\nu(x)$$

by ρ -invariance.

We say that a Borel set $B \subseteq X$ has ρ -density at least ϵ if there is a finite Borel subequivalence relation F of E such that $|B \cap [x]_F|_{[x]_F}^{\rho} \ge \epsilon$ for all $x \in X$. We say that a Borel set $B \subseteq X$ has positive ρ -density if there exists $\epsilon > 0$ for which E has ρ -density at least ϵ .

Proposition 2.5. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho \colon E \to (0, \infty)$ is a Borel cocycle, and $B \subseteq X$ is a Borel set with positive ρ -density. Then every $(\rho \upharpoonright (E \upharpoonright B))$ -invariant finite Borel measure μ extends to a ρ -invariant finite Borel measure.

Proof. Fix $\epsilon > 0$ for which B has ρ -density at least ϵ , as well as a finite Borel subequivalence relation F of E such that $|B \cap [x]_F|_{[x]_F}^{\rho} \geq \epsilon$ for all $x \in X$, and let $\overline{\mu}$ be the Borel measure on X given by

$$\overline{\mu}(A) = \int |A \cap [x]_F|_{B \cap [x]_F}^{\rho} d\mu(x)$$

for all Borel sets $A \subseteq X$.

As $\overline{\mu}(X) \leq \mu(B)/\epsilon$, it follows that $\overline{\mu}$ is finite, and Proposition 2.2 ensures that $\mu = \overline{\mu} \upharpoonright B$.

Lemma 2.6. Suppose that $f: X \to [0, \infty)$ is a Borel function. Then $\int f \ d\overline{\mu} = \int \sum_{y \in [x]_F} f(y) |\{y\}|_{B \cap [x]_F}^{\rho} \ d\mu(x)$.

Proof. It is sufficient to check the special case that f is the characteristic function of a Borel set, which is a direct consequence of the definition of $\overline{\mu}$.

Lemma 2.7. The measure $\overline{\mu}$ is $(\rho \upharpoonright F)$ -invariant.

Proof. Simply observe that if $A \subseteq X$ is a Borel set and $T: X \to X$ is a Borel automorphism whose graph is contained in F, then

$$\int_{A} \rho(T(x), x) \ d\overline{\mu}(x) = \int \sum_{y \in A \cap [x]_F} \rho(T(y), y) |\{y\}|_{B \cap [x]_F}^{\rho} \ d\mu(x)$$
$$= \int |T(A \cap [x]_F)|_{B \cap [x]_F}^{\rho} \ d\mu(x)$$
$$= \overline{\mu}(T(A))$$

by Lemma 2.6.

As $E = F \circ (E \cap (B \times B)) \circ F$, two applications of Proposition 2.3 ensure that $\overline{\mu}$ is ρ -invariant.

The primary argument of this section will hinge on the following approximation lemma.

Proposition 2.8. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho \colon E \to (0, \infty)$ is a Borel cocycle. Then for all Borel sets $A \subseteq X$ and positive real numbers r < 1, there exist an E-invariant Borel set $B \subseteq X$, a Borel set $C \subseteq B$, and a finite Borel subequivalence relation F of $E \upharpoonright C$ such that $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth, $r < |A \cap [x]_F|_{[x]_F \setminus A}^{\rho} < 1$ for all $x \in C$, and $A \cap [x]_E \subseteq C$ or $[x]_E \setminus A \subseteq C$ for all $x \in B$.

Proof. By [KM04, Lemma 7.3], there is a maximal Borel set \mathcal{S} of pairwise disjoint non-empty finite sets $S \subseteq X$ with $S \times S \subseteq E$ and $r < |A \cap S|_{S \setminus A}^{\rho} < 1$. Set $D = A \setminus \bigcup \mathcal{S}$ and $D' = (\sim A) \setminus \bigcup \mathcal{S}$.

Lemma 2.9. Suppose that $(x, x') \in E$. Then there exists a real number s > 1 with the property that x has only finitely-many $G^{\rho}_{(1/s,s)}$ -neighbors in D or x' has only finitely-many $G^{\rho}_{(1/s,s)}$ -neighbors in D'.

Proof. Fix $n, n' \in \mathbb{N}$ such that $(n/n')\rho(x, x')$ lies strictly between r and 1, and fix s > 1 sufficiently small that $(n/n')\rho(x, x')$ lies strictly between rs^2 and $1/s^2$. Suppose, towards a contradiction, that there are sets $S \subseteq D$ and $S' \subseteq D'$ of $G^{\rho}_{(1/s,s)}$ -neighbors of x and x' of cardinalities n and n'. Then $n/s < |S|^{\rho}_x < ns$ and $n'\rho(x',x)/s < |S'|^{\rho}_x < n'\rho(x',x)s$, so the ρ -size of S relative to S' lies strictly between $(n/n')\rho(x,x')/s^2$ and $(n/n')\rho(x,x')s^2$. As these bounds lie strictly between r and 1, this contradicts the maximality of S.

Lemma 2.9 ensures that $[D]_E \cap [D']_E$ is contained in the E-saturation of the union of the sets of the form $\{x \in D \mid |D \cap (G^{\rho}_{(1/s,s)})_x| < \aleph_0\}$ and $\{x \in D' \mid |D' \cap (G^{\rho}_{(1/s,s)})_x| < \aleph_0\}$, so $\rho \upharpoonright (E \upharpoonright ([D]_E \cap [D']_E))$ is

smooth. Set $B = \sim([D]_E \cap [D']_E)$ and $C = B \cap \bigcup S$, and let F be the equivalence relation on C whose classes are the subsets of C in S.

We say that a Borel set $B \subseteq X$ has σ -positive ρ -density if X is the union of countably-many E-invariant Borel sets $A_n \subseteq X$ for which $A_n \cap B$ has positive $(\rho \upharpoonright (E \upharpoonright A_n))$ -density.

Theorem 2.10. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho \colon E \to (0, \infty)$ is a Borel cocycle, and $A \subseteq X$ is an E-complete Borel set. Then X is the union of an E-invariant Borel set $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, an E-invariant Borel set $C \subseteq X$ for which $A \cap C$ has σ -positive $(\rho \upharpoonright (E \upharpoonright C))$ -density, and an E-invariant Borel set $D \subseteq X$ for which there is a finite-to-one Borel compression of the quotient of $\rho \upharpoonright (E \upharpoonright D)$ by a finite Borel subequivalence relation of $E \upharpoonright D$.

Proof. Fix a positive real number r < 1. We will show that, after throwing out countably-many E-invariant Borel sets $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, as well as countably-many E-invariant Borel sets $C \subseteq X$ for which $A \cap C$ has positive $(\rho \upharpoonright (E \upharpoonright C))$ -density, there are increasing sequences of finite Borel subequivalence relations F_n of E and E-complete F_n -invariant Borel sets $A_n \subseteq X$ with the property that $r < |A_n \cap [x]_{F_{n+1}}|_{(A_{n+1} \backslash A_n) \cap [x]_{F_{n+1}}}^{\rho} < 1$ for all $n \in \mathbb{N}$ and $x \in A_n$.

We begin by setting $A_0 = A$ and letting F_0 be equality. Suppose now that $n \in \mathbb{N}$ and we have already found A_n and F_n . By applying Proposition 2.8 to A_n/F_n , and throwing out an E-invariant Borel set $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, we obtain a finite Borel subequivalence relation $F_{n+1} \supseteq F_n$ of E and an F_{n+1} -invariant Borel set $A_{n+1} \subseteq X$ such that $r < |A_n \cap [x]_{F_{n+1}}|_{[x]_{F_{n+1}} \setminus A_n}^{\rho} < 1$ for all $x \in A_{n+1}$, and $A_n \cap [x]_E \subseteq A_{n+1}$ or $[x]_E \setminus A_n \subseteq A_{n+1}$ for all $x \in X$. By throwing out an E-invariant Borel set $C \subseteq X$ for which $A \cap C$ has positive $(\rho \upharpoonright (E \upharpoonright C))$ -density, we can assume that $A_n \subseteq A_{n+1}$, completing the recursive construction.

Set $B_n = A_n \setminus \bigcup_{m < n} A_m$ and define $\phi_n \colon B_n/F_n \to B_{n+1}/F_{n+1}$ by setting $\phi_n(B_n \cap [x]_{F_n}) = B_{n+1} \cap [x]_{F_{n+1}}$ for all $n \in \mathbb{N}$ and $x \in B_n$. Then the union of $\bigcup_{n \in \mathbb{N}} \phi_n$ and the identity function on $\sim \bigcup_{n \in \mathbb{N}} A_n$ is a Borel compression of the quotient of ρ by the union of $\bigcup_{n \in \mathbb{N}} F_n \upharpoonright B_n$ and equality.

As a corollary, we obtain the desired characterization.

Theorem 2.11. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel coboundary. Then exactly one of the following holds:

- (1) There is a finite-to-one Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.
- (2) There is a ρ -invariant Borel probability measure.

Proof. Proposition 1.9 ensures that conditions (1) and (2) are mutually exclusive. To see that at least one of them holds, fix a bounded open neighborhood $U \subseteq (0, \infty)$ of 1. As ρ is a Borel coboundary, the Lusin-Novikov uniformization theorem implies that there is an E-complete Borel set $A \subseteq X$ for which $\rho(E \upharpoonright A) \subseteq U$. By Theorem 2.10, after throwing out E-invariant Borel sets $B \subseteq X$ and $D \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth and there is a finite-to-one Borel compression of the quotient of $\rho \upharpoonright (E \upharpoonright D)$ by a finite Borel subequivalence relation of $E \upharpoonright D$, we can assume that A has σ -positive ρ -density.

If there is a $(\rho \upharpoonright (E \upharpoonright A))$ -invariant Borel probability measure μ , then by passing to an $(E \upharpoonright A)$ -invariant μ -positive Borel set, we can assume that A has positive ρ -density, in which case Proposition 2.5 yields a ρ -invariant Borel probability measure.

If there is no $(\rho \upharpoonright (E \upharpoonright A))$ -invariant Borel probability measure, then Proposition 2.4 ensures that there is no $(E \upharpoonright A)$ -invariant Borel probability measure, in which case the Becker-Kechris generalization of Nadkarni's theorem and the Dougherty-Jackson-Kechris characterization of the existence of a Borel compression yield an aperiodic smooth Borel subequivalence relation F of $E \upharpoonright A$. Then $\rho \upharpoonright F$ is smooth, and the fact that $\rho \upharpoonright (E \upharpoonright A)$ is bounded ensures that $\rho \upharpoonright F$ is also aperiodic. Fix a Borel extension $\phi \colon X \to A$ of the identity function on A whose graph is contained in E, and observe that ρ is aperiodic and smooth on the pullback of F through ϕ . Proposition 1.6 therefore yields an injective Borel compression of the quotient of ρ by a finite Borel subequivalence relation of E.

3. The general case

Here we generalize Nadkarni's theorem to Borel cocycles. As in §2, our primary argument will hinge on a pair of approximation lemmas. Given a finite set $S \subseteq X$ for which $S \times S \subseteq E$, let μ_S^{ρ} be the Borel probability measure on X given by $\mu_S^{\rho}(B) = |B \cap S|_S^{\rho}$.

Proposition 3.1. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho \colon E \to (0, \infty)$ is a Borel cocycle, $f \colon X \to [0, \infty)$ is Borel, $\delta > 0$, and $\epsilon > \sup_{(x,y) \in E} f(x) - f(y)$. Then there exist an E-invariant Borel set $B \subseteq X$ and a finite Borel subequivalence relation F of $E \upharpoonright B$ for which $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth and $\delta \epsilon > \sup_{(x,y) \in E \upharpoonright B} \int f \ d\mu_{[x]_F}^{\rho} - \int f \ d\mu_{[y]_F}^{\rho}$.

Proof. We can clearly assume that $\delta < 1$, and since one can repeatedly apply the corresponding special case of the proposition over the corresponding quotients, we can also assume that $\delta > 2/3$. For each $x \in X$, let $\overline{f}([x]_E)$ be the average of $\inf f([x]_E)$ and $\sup f([x]_E)$. By [KM04, Lemma 7.3], there is a maximal Borel set \mathcal{S} of pairwise disjoint non-empty finite sets $S \subseteq X$ with $S \times S \subseteq E$ and $\epsilon(\delta - 1/2) > |\int f d\mu_S^\rho - \overline{f}([S]_E)|$. Set $C = \{x \in \sim \bigcup \mathcal{S} \mid f(x) < \overline{f}([x]_E)\}$ and $D = \{x \in \sim \bigcup \mathcal{S} \mid f(x) > \overline{f}([x]_E)\}$.

Lemma 3.2. Suppose that $(x,y) \in E$. Then there exists a real number r > 1 such that x has only finitely-many $G^{\rho}_{(1/r,r)}$ -neighbors in C or y has only finitely-many $G^{\rho}_{(1/r,r)}$ -neighbors in D.

Proof. As $\delta > 2/3$, a trivial calculation reveals that $-\epsilon(\delta-1/2)$ is strictly below the average of $-\epsilon/2$ and $\epsilon(\delta-1/2)$, and that the average of $-\epsilon(\delta-1/2)$ and $\epsilon/2$ is strictly below $\epsilon(\delta-1/2)$. In particular, by choosing $m,n\in\mathbb{N}$ for which the ratios $s=m/(m+n\rho(y,x))$ and $t=n\rho(y,x)/(m+n\rho(y,x))$ are sufficiently close to 1/2, we can therefore ensure that the sums $s(\overline{f}([x]_E)-\epsilon/2)+t(\overline{f}([x]_E)+\epsilon(\delta-1/2))$ and $s(\overline{f}([x]_E)-\epsilon(\delta-1/2))+t(\overline{f}([x]_E)+\epsilon/2)$ both lie strictly between $\overline{f}([x]_E)-\epsilon(\delta-1/2)$ and $\overline{f}([x]_E)+\epsilon(\delta-1/2)$. Fix r>1 such that they lie strictly between $(\overline{f}([x]_E)-\epsilon(\delta-1/2))/r^2$ and $(\overline{f}([x]_E)+\epsilon(\delta-1/2))/r^2$.

Suppose, towards a contradiction, that there exist sets $S \subseteq C$ and $T \subseteq D$ of $G^{\rho}_{(1/r,r)}$ -neighbors of x and y of cardinalities m and n. Then $m/r < |S|_x^{\rho} < mr$ and $n\rho(y,x)/r < |T|_x^{\rho} < n\rho(y,x)r$, from which a trivial calculation reveals that $s/r^2 < |S|_x^{\rho}/|S \cup T|_x^{\rho} < sr^2$ and $t/r^2 < |T|_x^{\rho}/|S \cup T|_x^{\rho} < tr^2$. As $\int f \ d\mu_S^{\rho}$ lies between $\overline{f}([x]_E) - \epsilon/2$ and $\overline{f}([x]_E) - \epsilon(\delta - 1/2)$, and $\int f \ d\mu_T^{\rho}$ lies between $\overline{f}([x]_E) + \epsilon(\delta - 1/2)$ and $\overline{f}([x]_E) + \epsilon(\delta - 1/2)$)/ r^2 and r^2 and r^2 lies between r^2 lies lies between r^2 l

Lemma 3.2 ensures that $[C]_E \cap [D]_E$ is contained in the E-saturation of the union of the sets of the form $\{x \in C \mid |C \cap (G^{\rho}_{(1/r,r)})_x| < \aleph_0\}$ and $\{x \in D \mid |D \cap (G^{\rho}_{(1/r,r)})_x| < \aleph_0\}$, so $\rho \upharpoonright (E \upharpoonright ([C]_E \cap [D]_E))$ is smooth. Set $B = \sim ([C]_E \cap [D]_E)$, and let F be the equivalence relation on B whose classes are the subsets of B in S together with the singletons contained in $B \setminus \bigcup S$.

Proposition 3.3. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, $\rho: E \to (0, \infty)$ is a Borel

cocycle, $f, g: X \to [0, \infty)$ are Borel, and r > 1. Then there exist an E-invariant Borel set $B \subseteq X$, a Borel set $C \subseteq B$, and a finite Borel subequivalence relation F of $E \upharpoonright B$ such that $\rho \upharpoonright (E \upharpoonright \sim B)$ is smooth and $\int_C f \ d\mu^{\rho}_{[x]_F} \le \int_{B \setminus C} g \ d\mu^{\rho}_{[x]_F} \le r \int_C f \ d\mu^{\rho}_{[x]_F}$ for all $x \in B$.

Proof. As the proposition holds trivially on $f^{-1}(0) \cup g^{-1}(0)$, we can assume that $f, g: X \to (0, \infty)$. By [KM04, Lemma 7.3], there is a maximal Borel set S of pairwise disjoint non-empty finite sets $S \subseteq X$ with $S \times S \subseteq E$ and $1 < \int_{S \setminus T} g \ d\mu_S^{\rho} / \int_T f \ d\mu_S^{\rho} < r$ for some $T \subseteq S$. Set $D_{U,V} = (f^{-1}(U) \cap g^{-1}(V)) \setminus \bigcup S$ for all $U, V \subseteq (0, \infty)$.

Lemma 3.4. For all $x \in X$, there exists s > 1 such that x has only finitely-many $G^{\rho}_{(1/s,s)}$ -neighbors in $D_{(f(x)/s,f(x)s),(g(x)/s,g(x)s)}$.

Proof. Fix $m, n \in \mathbb{N}$ for which 1 < (g(x)/f(x))(n/m) < r, as well as s > 1 sufficiently large that $s^6 < (g(x)/f(x))(n/m) < r/s^6$. Suppose, towards a contradiction, that there is a set $S \subseteq D_{(f(x)/s,f(x)s),(g(x)/s,g(x)s)}$ of $G^{\rho}_{(1/s,s)}$ -neighbors of x of cardinality k = m + n, and fix $T \subseteq S$ of cardinality m. Then $f(x)\mu_S^{\rho}(T)/s < \int_T f \ d\mu_S^{\rho} < f(x)\mu_S^{\rho}(T)s$ and $(m/k)/s^2 < \mu_S^{\rho}(T) < (m/k)s^2$, so $f(x)(m/k)/s^3 < \int_T f \ d\mu_S^{\rho} < f(x)(m/k)s^3$. And $g(x)\mu_S^{\rho}(S \setminus T)/s < \int_{S\setminus T} g \ d\mu_S^{\rho} < g(x)\mu_S^{\rho}(S \setminus T)s$ and $(n/k)/s^2 < \mu_S^{\rho}(S \setminus T) < (n/k)s^2$, so $g(x)(n/k)/s^3 < \int_{S\setminus T} g \ d\mu_S^{\rho} < g(x)(n/k)s^3$. It follows that $\int_{S\setminus T} g \ d\mu_S^{\rho} / \int_T f \ d\mu_S^{\rho}$ lies strictly between $(g(x)/f(x))(n/m)/s^6$ and $(g(x)/f(x))(n/m)s^6$, and therefore strictly between 1 and r, contradicting the maximality of S.

As Lemma 3.2 ensures that $\sim \bigcup \mathcal{S}$ is contained in the union of the sets of the form $\{x \in D_{U,V} \mid |D_{U,V} \cap (G^{\rho}_{(1/s,s)})_x| < \aleph_0\}$, it follows that $\rho \upharpoonright (E \upharpoonright [\sim \bigcup \mathcal{S}]_E)$ is smooth. Set $B = \sim [\sim \bigcup \mathcal{S}]_E$, let F be the Borel equivalence relation on B whose classes are the subsets of B in \mathcal{S} , and appeal to the Lusin-Novikov uniformization theorem to obtain a Borel set $C \subseteq B$ with the property that $1 < \int_{B \setminus C} g \ d\mu^{\rho}_{[x]_F} / \int_C f \ d\mu^{\rho}_{[x]_F} < r$ for all $x \in B$.

We are now ready to establish our primary result.

Theorem 3.5. Suppose that X is a standard Borel space, E is a countable Borel equivalence relation on X, and $\rho: E \to (0, \infty)$ is a Borel cocycle. Then exactly one of the following holds:

- (1) There is a finite-to-one Borel compression of ρ over a finite Borel subequivalence relation of E.
- (2) There is a ρ -invariant Borel probability measure.

Proof. Proposition 1.9 ensures that conditions (1) and (2) are mutually exclusive. To see that at least one of them holds, fix a countable group Γ of Borel automorphisms of X whose induced orbit equivalence relation is E, and define $\rho_{\gamma} \colon X \to (0, \infty)$ by $\rho_{\gamma}(x) = \rho(\gamma \cdot x, x)$ for all $\gamma \in \Gamma$.

By standard change of topology results (see, for example, [Kec95, §13]), there exist a Polish topology on $[0,\infty)$ and a zero-dimensional Polish topology on X, compatible with the underlying Borel structures of $[0,\infty)$ and X, with respect to which every interval with rational endpoints is clopen, Γ acts by homeomorphisms, and each ρ_{γ} is continuous. Fix a compatible complete metric on X, as well as a countable algebra \mathcal{U} of clopen subsets of X, closed under multiplication by elements of Γ , and containing a basis for X as well as the pullback of every interval with rational endpoints under every ρ_{γ} .

We say that a function $f: X \to [0, \infty)$ is *U-simple* if it is a finite linear combination of characteristic functions of sets in \mathcal{U} . Note that for all $\epsilon > 0, \gamma \in \Gamma$, and $Y \subseteq X$ on which ρ_{γ} is bounded, there is such a function with the further property that $|f(y) - \rho_{\gamma}(y)| \le \epsilon$ for all $y \in Y$.

Fix a sequence $(\epsilon_n)_{n\in\mathbb{N}}$ of positive real numbers converging to zero, as well as an increasing sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ of finite subsets of \mathcal{U} whose union is \mathcal{U} .

By recursively applying Propositions 3.1 and 3.3 to functions of the form $[x]_F \mapsto \mu^{\rho}_{[x]_F}(A)$ and $[x]_F \mapsto \mu^{\rho}_{[x]_F}(B) - \mu^{\rho}_{[x]_F}(A)$, and throwing out countably-many E-invariant Borel sets $B \subseteq X$ for which $\rho \upharpoonright (E \upharpoonright B)$ is smooth, we obtain increasing sequences of finite algebras $\mathcal{A}_n \supseteq \mathcal{U}_n$ of Borel subsets of X and finite Borel subequivalence relations F_n of E such that:

$$(1) \ \forall n \in \mathbb{N} \forall A \in \mathcal{A}_n \forall (x, y) \in E \ \mu^{\rho}_{[x]_{F_{n+1}}}(A) - \mu^{\rho}_{[y]_{F_{n+1}}}(A) \le \epsilon_n.$$

(1)
$$\forall n \in \mathbb{N} \forall A \in \mathcal{A}_{n} \forall (x, y) \in E \ \mu_{[x]_{F_{n+1}}}^{\rho}(A) - \mu_{[y]_{F_{n+1}}}^{\rho}(A) \leq \epsilon_{n}.$$

(2) $\forall n \in \mathbb{N} \forall A, B \in \mathcal{A}_{n} \ (\forall x \in X \ \mu_{[x]_{F_{n}}}^{\rho}(A) \leq \mu_{[x]_{F_{n}}}^{\rho}(B) \Longrightarrow \exists C \in \mathcal{A}_{n+1} \forall x \in X \ 0 \leq \mu_{[x]_{F_{n+1}}}^{\rho}(B \setminus C) - \mu_{[x]_{F_{n+1}}}^{\rho}(A) \leq \epsilon_{n}).$

Set $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$ and $F = \bigcup_{n \in \mathbb{N}} F_n$. Condition (1) ensures that we obtain finitely-additive probability measures μ_x on \mathcal{U} by setting $\mu_x(U) = \lim_{n \to \infty} \mu^{\rho}_{[x]_{F_-}}(U)$ for all $U \in \mathcal{U}$ and $x \in X$.

Lemma 3.6. Suppose that $(U_n)_{n\in\mathbb{N}}$ is a sequence of pairwise disjoint sets in \mathcal{U} whose union is in \mathcal{U} and $B = \{x \in X \mid \sum_{n \in \mathbb{N}} \mu_x(U_n) < 1\}$ $\mu_x(\bigcup_{n\in\mathbb{N}}U_n)$. Then there is a finite-to-one Borel compression of ρ $(E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$.

Proof. As $\mu_x(\bigcup_{m\geq n} U_m) - \sum_{m\geq n} \mu_x(U_m)$ is independent of n, it follows that for all $x\in B$, there exist $\delta>0$ and $n\in\mathbb{N}$ with the property that $\delta + 2\sum_{m>n} \mu_x(U_m) \leq \mu_x(\bigcup_{m>n} U_m)$. So by partitioning B into countably-many E-invariant Borel sets and passing to terminal segments of $(U_n)_{n\in\mathbb{N}}$ on each set, we can assume that $B=\{x\in X\mid \delta+2\sum_{n\in\mathbb{N}}\mu_x(U_n)\leq \mu_x(\bigcup_{n\in\mathbb{N}}U_n)\}$ for some $\delta>0$. Fix a sequence $(\delta_n)_{n\in\mathbb{N}}$ of positive real numbers whose sum is at most δ .

Sublemma 3.7. There are pairwise disjoint sets $A_n \subseteq \bigcup_{m>n} U_m$ in \mathcal{A} with the property that for all $n \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that $\forall x \in B \ 0 \leq \mu_{[x]_{F_k}}^{\rho}(A_n) - \mu_{[x]_{F_k}}^{\rho}(U_n) \leq \delta_n$.

Proof. Suppose that $n \in \mathbb{N}$ and we have already found $(A_m)_{m < n}$. Note that if $x \in B$, then

$$\mu_x(U_n) + \sum_{m \ge n} \delta_m \le \mu_x \left(\bigcup_{m \in \mathbb{N}} U_m \right) - \left(\mu_x(U_n) + \sum_{m < n} 2\mu_x(U_m) + \delta_m \right)$$
$$\le \mu_x \left(\bigcup_{m > n} U_m \right) - \sum_{m < n} \mu_x(U_m) + \delta_m,$$

so $\forall x \in B \ \mu_{[x]_{F_k}}^{\rho}(U_n) \leq \mu_{[x]_{F_k}}^{\rho}(\bigcup_{m>n} U_m \setminus \bigcup_{m< n} A_m)$ for sufficiently large $k \in \mathbb{N}$, by condition (1). It then follows from condition (2) that there exists $A_n \subseteq \bigcup_{m>n} U_m \setminus \bigcup_{m< n} A_m$ in \mathcal{A} with the property that $\forall x \in B \ 0 \leq \mu_{[x]_{F_k}}^{\rho}(A_n) - \mu_{[x]_{F_k}}^{\rho}(U_n) \leq \delta_n$ for sufficiently large $k \in \mathbb{N}$. \square

Fix $k_n \in \mathbb{N}$ with the property that $\mu_{[x]_{F_{k_n}}}^{\rho}(U_n) \leq \mu_{[x]_{F_{k_n}}}^{\rho}(A_n)$ for all $n \in \mathbb{N}$ and $x \in B$, as well as Borel functions $\phi_n \colon B \cap U_n \to A_n$ whose graphs are contained in F_{k_n} for all $n \in \mathbb{N}$. Then the union of $\bigcup_{n \in \mathbb{N}} \phi_n$ and the identity function on $B \setminus \bigcup_{n \in \mathbb{N}} U_n$ is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over the union of $\bigcup_{n \in \mathbb{N}} F_{k_n} \upharpoonright (A_n \cap B)$ and equality on B.

Lemma 3.6 ensures that, after throwing out countably-many E-invariant Borel sets $B \subseteq X$ for which there is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$, we can assume that for all $\delta > 0$ and $U \in \mathcal{U}$, there is a partition $(U_n)_{n \in \mathbb{N}}$ of U into sets in \mathcal{U} of diameter at most δ such that $\mu_x(U) = \sum_{n \in \mathbb{N}} \mu_x(U_n)$ for all $x \in X$.

Lemma 3.8. Each μ_x is a measure on \mathcal{U} .

Proof. Suppose, towards a contradiction, that there are pairwise disjoint sets $U_n \in \mathcal{U}$ with $\bigcup_{n \in \mathbb{N}} U_n \in \mathcal{U}$ but $\mu_x(\bigcup_{n \in \mathbb{N}} U_n) > \sum_{n \in \mathbb{N}} \mu_x(U_n)$, for some $x \in X$. Fix a sequence $(\delta_n)_{n \in \mathbb{N}}$ of positive real numbers converging to zero, and recursively construct a sequence $(V_t)_{t \in \mathbb{N}^{<\mathbb{N}}}$ of sets in \mathcal{U} , beginning with $V_{\emptyset} = \bigcup_{n \in \mathbb{N}} U_n$, such that $(V_{t \cap (n)})_{n \in \mathbb{N}}$ is a partition of V_t into sets of diameter at most $\delta_{|t|}$ with the property that

 $\mu_x(V_t) = \sum_{n \in \mathbb{N}} \mu_x(V_{t \cap (n)})$, for all $t \in \mathbb{N}^{<\mathbb{N}}$. Set $r = \sum_{n \in \mathbb{N}} \mu_x(U_n)$, and recursively construct a sequence $(i_n)_{n \in \mathbb{N}}$ of natural numbers with the property that $\sum_{t \in T_n} \mu_x(V_t) > r$, where $T_n = \prod_{m < n} i_m$, for all $n \in \mathbb{N}$. Set $V_n = \bigcup_{t \in T_n} V_t$ for all $n \in \mathbb{N}$. As $(U_n)_{n \in \mathbb{N}}$ covers the compact set $K = \bigcap_{n \in \mathbb{N}} V_n$, so too does $(U_m)_{m < n}$, for some $n \in \mathbb{N}$. Set $U = \bigcup_{m < n} U_m$, and let $U = U_m = U_m$ be the tree of all $U \in U_m = U_m$ for which $U \in U_m = U_m$. Note that $U \in U_m = U_m$ is necessarily well-founded, since any branch $U \in U_m = U_m$ through $U \in U_m = U_m$ with $U \in U_m = U_m$. König's Lemma therefore yields $U \in U_m = U_m$ with $U \in U_m = U_m$, in which case $U \in U_m = U_m$, contradicting the fact that $U_m = U_m = U_m$.

As a consequence, Carathéodory's Theorem ensures that there is a unique extension of each μ_x to a Borel probability measure $\overline{\mu}_x$ on X.

Lemma 3.9. Suppose that $\gamma \in \Gamma$, $U \in \mathcal{U}$, ρ_{γ} is bounded on U, and $B = \{x \in X \mid \overline{\mu}_x(\gamma(U)) \neq \int_U \rho_{\gamma} d\overline{\mu}_x\}$. Then there is a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$.

Proof. By the symmetry of our argument, it is enough to establish the analogous lemma for the set $B = \{x \in X \mid \overline{\mu}_x(\gamma(U)) < \int_U \rho_\gamma \ d\overline{\mu}_x\}$. By partitioning B into countably-many E-invariant Borel sets, we can assume that $B = \{x \in X \mid \delta + \overline{\mu}_x(\gamma(U)) < \int_U \rho_\gamma \ d\overline{\mu}_x\}$ for some $\delta > 0$.

Sublemma 3.10. For all $\epsilon > 0$, there exists $n \in \mathbb{N}$ with the property that $|\int_{U} \rho_{\gamma} d\overline{\mu}_{x} - \int_{U} \rho_{\gamma} d\mu^{\rho}_{[x]_{F_{n}}}| \leq \epsilon$ for all $x \in X$.

Proof. Fix a \mathcal{U} -simple function $f \colon X \to [0, \infty)$ with the property that $|f(x) - \rho_{\gamma}(x)| \le \epsilon/3$ for all $x \in U$. By condition (1), there exists $n \in \mathbb{N}$ such that $|\int_{U} f \ d\overline{\mu}_{x} - \int_{U} f \ d\mu_{[x]_{F_{n}}}^{\rho}| \le \epsilon/3$ for all $x \in X$. But then

$$\left| \int_{U} \rho_{\gamma} \ d\overline{\mu}_{x} - \int_{U} \rho_{\gamma} \ d\mu_{[x]_{F_{n}}}^{\rho} \right| \leq \left| \int_{U} \rho_{\gamma} \ d\overline{\mu}_{x} - \int_{U} f \ d\overline{\mu}_{x} \right| +$$

$$\left| \int_{U} f \ d\overline{\mu}_{x} - \int_{U} f \ d\mu_{[x]_{F_{n}}}^{\rho} \right| +$$

$$\left| \int_{U} f \ d\mu_{[x]_{F_{n}}}^{\rho} - \int_{U} \rho_{\gamma} \ d\mu_{[x]_{F_{n}}}^{\rho} \right|$$

$$\leq \epsilon$$

for all $x \in X$.

Condition (1) and Sublemma 3.10 ensure that there exists $n \in \mathbb{N}$ such that $\mu_{[x]_{F_n}}^{\rho}(\gamma(U)) < \int_U \rho_{\gamma} d\mu_{[x]_{F_n}}^{\rho}$ for all $x \in B$. As the former quantity is $|\gamma(U) \cap [x]_{F_n}|_x^{\rho}/|[x]_{F_n}|_x^{\rho}$ and the latter is $|\gamma(U \cap [x]_{F_n})|_x^{\rho}/|[x]_{F_n}|_x^{\rho}$, it follows that $|\gamma(U) \cap [x]_{F_n}|_x^{\rho} < |\gamma(U \cap [x]_{F_n})|_x^{\rho}$ for all $x \in B$, so any

function from $B \cap \gamma(U)$ to $B \cap \gamma(U)$, sending $\gamma(U) \cap [x]_{F_n}$ to $\gamma(U \cap [x]_{F_n})$ for all $x \in B \cap \gamma(U)$, is a compression of $\rho \upharpoonright (E \upharpoonright (B \cap \gamma(U)))$ over the equivalence relation $(\gamma \times \gamma)(F_n) \upharpoonright (B \cap \gamma(U))$. The Lusin-Novikov uniformization theorem yields a Borel such function, and every Borel such function trivially extends to a finite-to-one Borel compression of $\rho \upharpoonright (E \upharpoonright B)$ over a finite Borel subequivalence relation of $E \upharpoonright B$.

Lemma 3.9 ensures that, after throwing out countably-many E-invariant Borel sets $B\subseteq X$ for which there is a finite-to-one Borel compression of $\rho\upharpoonright(E\upharpoonright B)$ over a finite Borel subequivalence relation of $E\upharpoonright B$, we can assume that $\overline{\mu}_x(\gamma(U))=\int_U \rho_\gamma\ d\overline{\mu}_x$ for all $\gamma\in\Gamma$, $U\in\mathcal{U}$ on which ρ_γ is bounded, and $x\in X$. As our choice of topologies ensures that every open set $U\subseteq X$ is a disjoint union of sets in \mathcal{U} on which ρ_γ is bounded, we obtain the same conclusion even when $U\subseteq X$ is an arbitrary open set. As every Borel probability measure on a Polish space is regular (see, for example, [Kec95, Theorem 17.10]), we obtain the same conclusion even when $U\subseteq X$ is an arbitrary Borel set. And since every Borel automorphism $T\colon X\to X$ whose graph is contained in E is a disjoint union of restrictions of automorphisms in Γ to Borel subsets, it follows that each $\overline{\mu}_x$ is ρ -invariant.

Acknowledgements. I would like to thank the anonymous referee for an unusually thorough reading of the original version of the paper and many useful suggestions.

References

- [BK96] Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877
- [DJK94] R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121 (94c:03066)
- [FM77] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR MR0578656 (58 #28261a)
- [Hop32] Eberhard Hopf, Theory of measure and invariant integrals, Trans. Amer. Math. Soc. **34** (1932), no. 2, 373–393. MR 1501643
- [Kec95] A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
- [KM04] A. S. Kechris and B. D. Miller, Topics in orbit equivalence, Lecture Notes in Mathematics, vol. 1852, Springer-Verlag, Berlin, 2004. MR 2095154 (2005f:37010)
- [KST99] A. S. Kechris, S. Solecki, and S. Todorcevic, Borel chromatic numbers, Adv. Math. 141 (1999), no. 1, 1–44. MR MR1667145 (2000e:03132)

- [Mil08a] B. D. Miller, The existence of measures of a given cocycle. II. Probability measures, Ergodic Theory Dynam. Systems 28 (2008), no. 5, 1615–1633. MR 2449547 (2010a:37005)
- [Mil08b] Benjamin Miller, The existence of measures of a given cocycle. I. Atomless, ergodic σ -finite measures, Ergodic Theory Dynam. Systems **28** (2008), no. 5, 1599–1613. MR 2449546 (2010a:37005)
- [MVN36] F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math.
 (2) 37 (1936), no. 1, 116–229. MR 1503275
- [Nad90] M. G. Nadkarni, On the existence of a finite invariant measure, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 3, 203–220. MR 1081705
- [Wei84] Benjamin Weiss, Measurable dynamics, Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 395–421. MR 737417 (85j:28027)

BENJAMIN D. MILLER, KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC, UNIVERSITÄT WIEN, WÄHRINGER STRASSE 25, 1090 WIEN, AUSTRIA

E-mail address: benjamin.miller@univie.ac.at

URL: http://www.logic.univie.ac.at/benjamin.miller