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A Classical Proof of the Kanovei-Zapletal Canonization

Benjamin D. Miller

Abstract. We give a classical proof of the Kanovei-Zapletal canonization of
Borel equivalence relations on Polish spaces [5, 6].

1. Introduction

A canonization theorem for a class M of structures is a result asserting that
for some small subclass N ⊆ M, some class X of large sets, and every structure
M ∈M, there exist N ∈ N and X ∈ X with the property that M � X = N � X.

Here we consider such theorems in the context of descriptive set theory. A well-
known example is the following straightforward corollary of Mycielski’s theorem on
meager subsets of the plane (see §8 of [7]):

Theorem 1 (Galvin). Suppose that X is a perfect Polish space and E is a
Baire measurable equivalence relation on X. Then there is a perfect set B ⊆ X
with the property that E � B ∈ {∆(B), B ×B}, where ∆(B) = {(x, x) | x ∈ B}.

It is natural to ask whether there are analogous theorems if we consider even
larger sets. One must of course be careful here, as in the presence of the axiom
of choice, perfect subsets of Polish spaces are as large as they come. Fortunately,
work in descriptive set theory over the past two decades has provided us with a
natural successor of the continuum among the definable cardinals.

Suppose that X is a standard Borel space. A Borel equivalence relation F on
X is smooth if there is a Borel map ϕ : X → 2ω such that

∀x0, x1 ∈ X (x0Fx1 ⇐⇒ ϕ(x0) = ϕ(x1)).

Suppose that B ⊆ X is a Borel set. We say that B is F -smooth if F � B is smooth.
Otherwise, we say that B is F -non-smooth.

Suppose now that X is a Polish space and F is a Borel equivalence relation on
X which is not smooth. Theorem 1 implies that every perfect subset of X contains
an F -smooth perfect set, and the Harrington-Kechris-Louveau dichotomy theorem
[4] implies that every F -non-smooth Borel subset of X contains an F -non-smooth
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perfect set. In particular, it follows that the condition of being F -non-smooth is
strictly stronger than the condition of containing a perfect set.

One natural attempt at strengthening Theorem 1 is to fix a Borel equivalence
relation F on X which is not smooth, and to augment the conclusion of the theo-
rem by asking that the set B is F -non-smooth. Unfortunately, this version of the
result cannot possibly hold in the special case that E = F , as the equivalence rela-
tions ∆(B) and B×B are themselves smooth. The Kanovei-Zapletal canonization
theorem [5, 6] asserts that this is the only counterexample to the stronger result:

Theorem 2 (Kanovei-Zapletal). Suppose that X is a Polish space, E and F
are Borel equivalence relations on X, and F is not smooth. Then there is an F -
non-smooth Borel set B ⊆ X with the property that E � B ∈ {∆(B), F � B,B×B}.

The original proof of this result used effective descriptive set theory and forcing.
The goal of this note is to point out that, at least in the special case when X = 2ω

and F is the equivalence relation given by

xE0y ⇐⇒ ∃m ∈ ω∀n ∈ ω \m (x(n) = y(n)),

it can also be seen as a corollary of two essentially well-known facts using purely
classical methods, and that the full theorem can then be obtained via an application
of the Harrington-Kechris-Louveau dichotomy theorem [4].

2. Preliminaries

Suppose that X and Y are sets. A homomorphism from a set R ⊆ X ×X to a
set S ⊆ Y × Y is a function ϕ : X → Y such that

∀x0, x1 ∈ X ((x0, x1) ∈ R =⇒ (ϕ(x0), ϕ(x1)) ∈ S).

A homomorphism from a sequence (Ri)i∈I of subsets of X×X to a sequence (Si)i∈I

of subsets of Y × Y is a function ϕ : X → Y which is a homomorphism from Ri to
Si for all i ∈ I.

The following Mycielski-style fact is implicit in many arguments involving Borel
equivalence relations and Baire category:

Proposition 3. Suppose that R ⊆ 2ω × 2ω is meager. Then there is a contin-
uous homomorphism from (∆(2ω)c, Ec

0, E0) to (∆(2ω)c, Rc, E0).

Proof. Fix a decreasing sequence of dense open sets Un ⊆ ∆(2ω)c with the
property that R ∩

⋂
n∈ω Un = ∅. We will recursively construct natural numbers

kn ∈ ω and functions un : 2n → 2kn such that:
(1) ∀n ∈ ω (kn < kn+1).
(2) ∀i ∈ 2∀n ∈ ω∀s ∈ 2n (un(s) v un+1(sai)).
(3) ∀i ∈ 2∀n ∈ ω∀s, t ∈ 2n (Nun+1(sai) ×Nun+1(ta(1−i)) ⊆ Un).
(4) ∀i, j ∈ 2∀n ∈ ω∀s, t ∈ 2n

(i = j ⇐⇒ un+1(sai) � [kn, kn+1) = un(taj) � [kn, kn+1)).
We begin by setting k0 = 0 and u0(∅) = ∅. Suppose now that we have found
kn ∈ ω and un : 2n → 2kn . By a straightforward recursion of finite length, we can
find k ∈ ω and distinct sequences v0, v1 ∈ 2k such that Nun(s)avi

×Nun(t)av1−i
⊆ Un

for all i ∈ 2 and s, t ∈ 2n. Set kn+1 = kn + k and un+1(sai) = un(s)avi for i ∈ 2
and s ∈ 2n. This completes the recursive construction.
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Conditions (1) and (2) ensure that we obtain a continuous function π : 2ω → 2ω

by setting π(x) = limn→ω un(x � n), condition (3) implies that π is a homomor-
phism from (∆(2ω)c, Ec

0) to (∆(2ω)c, Rc), and condition (4) ensures that π is a
homomorphism from E0 to E0.

The following fact is a straightforward generalization of the Glimm-Effros di-
chotomy theorem [1, 3]:

Theorem 4. Suppose that X is a Polish space, E ⊆ F are countable Bor-
el equivalence relations on X, and E is not smooth. Then there is a continuous
homomorphism from (∆(2ω)c, Ec

0, E0) to (∆(X)c, F c, E).

Proof. The orbit equivalence relation associated with a group G of permuta-
tions of X is given by

x0E
X
G x1 ⇐⇒ ∃g ∈ G (g · x0 = x1).

In [2], Feldman-Moore established that every countable Borel equivalence relation
on a Polish space is the orbit equivalence relation associated with a countable
group of Borel automorphisms (see also Theorem 1.3 of [8]). This trivially implies
that there are countable groups G ≤ H of Borel automorphisms of X such that
E = EX

G and F = EX
H . Fix an increasing sequence of finite symmetric sets Hn ⊆ H

containing 1H such that H =
⋃

n∈ω Hn. By standard change of topology results
(see §13 of [7]), we can assume that X is a zero-dimensional Polish metric space
and H is a group of homeomorphisms of X.

We will recursively construct clopen sets Un ⊆ X and homeomorphisms gn ∈ G
such that for all n ∈ ω, the following conditions hold:

(1) Un is E-non-smooth.
(2) Un+1 ⊆ Un ∩ g−1

n (Un).
(3) ∀s ∈ 2n+1 (diam(gs(Un+1)) ≤ 1/(n+ 1)), where gs =

∏
i∈|s| g

s(i)
i .

(4) ∀h ∈ Hn∀s, t ∈ 2n (hgs(Un+1) ∩ gtgn(Un+1) = ∅).
We begin by setting U0 = X.

Suppose now that n ∈ ω and we have already found Un ⊆ X and gm ∈ G for
all m ∈ n. For each g ∈ G, define Vg ⊆ X by

Vg = {x ∈ Un ∩ g−1(Un) | ∀h ∈ Hn∀s, t ∈ 2n (hgs · x 6= gtg · x)}.

Set C = Un \
⋃

g∈G Vg, and observe that if (x, y) ∈ E � C, then there exists g ∈ G
such that g · x = y, so the fact that x /∈ Vg ensures the existence of h ∈ Hn and
s, t ∈ 2n such that hgs · x = gtg · x = gt · y, thus y = g−1

t hgs · x. As there are only
finitely many possible values of g−1

t hgs, it follows that C intersects each equivalence
class of E in a finite set, and is therefore E-smooth. As Un = C ∪

⋃
g∈G Vg and Un

is E-non-smooth, there exists gn ∈ G such that Vgn is E-non-smooth.
Our topological assumptions ensure that Vgn

is the union of countably many
clopen sets U ⊆ X which satisfy the following conditions:

(a) ∀s ∈ 2n+1 (diam(gs(U)) ≤ 1/(n+ 1)).
(b) ∀h ∈ Hn∀s, t ∈ 2n (hgs(U) ∩ gtgn(U) = ∅).

Let Un+1 denote any such E-non-smooth set. This completes the construction.
Conditions (2) and (3) ensure that for all x ∈ 2ω, the clopen sets of the form

gx�n(Un), for n ∈ ω, are decreasing and of vanishing diameter. We therefore obtain
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a continuous function π : 2ω → X by setting

π(x) = the unique element of
⋂
n∈ω

gx�n(Un).

Lemma 5. If k ∈ ω, s ∈ 2k, and x ∈ 2ω, then π(sax) = gs · π(0kax).

Proof of lemma. Simply observe that

{π(sax)} =
⋂
n∈ω

gsa(x�n)(Uk+n)

=
⋂
n∈ω

gsg0ka(x�n)(Uk+n)

= gs

(⋂
n∈ω

g0ka(x�n)(Uk+n)

)
= gs({π(0kax)}),

thus π(sax) = gs · π(0kax).

Lemma 5 implies that π is a homomorphism from E0 to E.

Lemma 6. If n ∈ ω, x, y ∈ 2ω, and x(n) 6= y(n), then π(y) /∈ Hn · π(x).

Proof of lemma. By reversing the roles of x and y if necessary, we can as-
sume that x(n) = 0 and y(n) = 1. Suppose, towards a contradiction, that there
exists h ∈ Hn with π(y) = h · π(x). Set s = x � n and t = y � n. Lemma 5 ensures
that the points x′ = g−1

s · π(x) = g−1
s h−1 · π(y) and y′ = g−1

n g−1
t · π(y) are both in

Un+1, thus π(y) ∈ hgs(Un+1) ∩ gtgn(Un+1), which contradicts condition (4).

Lemma 6 ensures that π is a homomorphism from (∆(2ω)c, Ec
0) to (∆(X)c, F c),

which completes the proof of the theorem.

3. Canonization

A reduction of a set R ⊆ X ×X to a set S ⊆ Y × Y is a homomorphism from
(Rc, R) to (Sc, S). An embedding is an injective reduction.

Theorem 7 (Kanovei-Zapletal). Suppose that E is a Borel equivalence relation
on 2ω. Then there is an E0-non-smooth Borel set B ⊆ 2ω with the property that
E � B ∈ {∆(B), E0 � B,B ×B}.

Proof. If there exists x ∈ 2ω such that [x]E is non-meager, then the set
B = [x]E is as desired, since E � B = B × B. Otherwise, the Kuratowski-Ulam
theorem (see §8 of [7]) implies that E is meager, so Proposition 3 ensures the
existence of a continuous homomorphism ϕ : 2ω → 2ω from (∆(2ω)c, Ec

0, E0) to
(∆(2ω)c, (E ∪ E0)c, E0). Set F = (ϕ× ϕ)−1(E), noting that F ⊆ E0.

If F is smooth, then there is a Borel transversal A ⊆ 2ω of F , in which case
A is E0-non-smooth and F � A = ∆(A), so the set B = ϕ(A) is as desired,
since E � B = ∆(B). If F is not smooth, then Theorem 4 gives a continuous
homomorphism ψ : 2ω → 2ω from (∆(2ω)c, Ec

0, E0) to (∆(X)c, Ec
0, F ), so the set

B = ϕ ◦ ψ(2ω) is as desired, since E � B = E0 � B.

Theorem 8 (Kanovei-Zapletal). Suppose that X is a Polish space, E and F
are Borel equivalence relations on X, and F is not smooth. Then there is an F -
non-smooth Borel set B ⊆ X with the property that E � B ∈ {∆(B), F � B,B×B}.
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Proof. The Harrington-Kechris-Louveau dichotomy theorem [4] yields a con-
tinuous embedding π : 2ω → X of E0 into F . Set E′ = (π × π)−1(E) and F ′ =
(π × π)−1(F ) = E0. By Theorem 7, there is an F ′-non-smooth set B′ ⊆ 2ω such
that E′ � B′ ∈ {∆(B′), F ′ � B′, B′ ×B′}. The set B = π(B′) is as desired.

References

1. Edward G. Effros, Transformation groups and C∗-algebras, Ann. of Math. (2) 81 (1965), 38–55.

MR MR0174987 (30 #5175)
2. Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von

Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR MR0578656

(58 #28261a)
3. James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961),

124–138. MR MR0136681 (25 #146)
4. L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equiv-

alence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR MR1057041 (91h:28023)

5. Vladimir Kanovei, Canonization of Borel equivalence relations on large sets, Euler and modern
combinatorics, international conference (St. Petersburg, Russia), Euler International Mathe-

matical Institute, June 2007, pp. 12–13.

6. Vladimir Kanovei and Jindrich Zapletal, Canonizing Borel equivalence relations on Polish
spaces, Preprint, 2007.

7. Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol.

156, Springer-Verlag, New York, 1995. MR MR1321597 (96e:03057)
8. Alexander S. Kechris and Benjamin D. Miller, Topics in orbit equivalence, Lecture Notes in

Mathematics, vol. 1852, Springer-Verlag, Berlin, 2004. MR MR2095154 (2005f:37010)

Benjamin D. Miller, 8159 Constitution Road, Las Cruces, New Mexico 88007
E-mail address: glimmeffros@gmail.com

URL: http://glimmeffros.googlepages.com


