A GENERALIZATION OF THE G, DICHOTOMY AND
A STRENGTHENING OF THE E) DICHOTOMY

BENJAMIN D. MILLER

ABSTRACT. We generalize the G dichotomy to doubly-indexed
sequences of analytic digraphs. Under a mild definability assump-
tion, we use this generalization to characterize the family of Borel
actions of tsi Polish groups on Polish spaces that can be decom-
posed into countably-many Borel actions admitting complete Borel
sets that are lacunary with respect to an open neighborhood of
the identity. We also show that if the group in question is non-
archimedean, then the inexistence of such a decomposition yields a
special kind of continuous embedding of E into the corresponding
orbit equivalence relation.

INTRODUCTION

A digraph on a set X is an irreflexive set G C X x X. The restriction
of such a digraph to aset Y C X isgiven by G [ Y =GN (Y xY).
A set Y C X is G-independent if G 1Y = 0. A Z-coloring of G is a
function 7: X — Z such that 77!({z}) is G-independent for all z € Z.

A homomorphism from a binary relation R on X to a binary relation
S on Y is a function ¢: X — Y such that w R x = ¢(w) S ¢(x)
for all w,z € X. A homomorphism from a sequence (R;);c; of binary
relations on X to a sequence (.5;);c; of binary relations on Y is a func-
tion ¢: X — Y that is a homomorphism from R; to S; for all ¢ € I.

For all sets N, let X~ denote the set of functions s: N — X, and
define X<N =,y X" and X=N = X<NUX". Given M C N, s € XM,
and t € X¥, we write s C ¢ to indicate that s =¢ | M. For all x € X,
let (z) denote the element of X' sending 0 to z. Let s ~ ¢ denote the
concatenation of sequences s € X<N and ¢t € X=N,

Fix k, € N such that kg =0, Vn € N k., < max{k,, | m <n}+1,
and Vk € Nd*n € N k = k,,, as well as sequences s, € 2" such that
Vk € NVs € 2<N9n € N (k = k, and s C s,). For all s € 2<N let G,
denote the digraph on 2V given by G, = {(s ~ (i) ~ ¢)i<2 | ¢ € 2},
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For all k € N, let Goy denote the digraph on 2V given by Gy =
U{Gs, | n e Nand k =k, }.

Endow N with the discrete topology, and NY with the corresponding
product topology. A topological space is analytic if it is a continuous
image of a closed subset of NN, and Polish if it is separable and admits a
compatible complete metric. A subset of a topological space is Borel if
it is in the smallest o-algebra containing the open sets, and co-analytic
if its complement is analytic. Every Polish space is analytic (see, for
example, [Kec95, Theorem 7.9]), and Souslin’s theorem ensures that
a subset of an analytic Hausdorff space is Borel if and only if it is
analytic and co-analytic (see, for example, the proof of [Kec95l 14.11]).
A function between topological spaces is Borel if preimages of open
sets are Borel.

A sequence (X; ;)i en of sets is increasing in j if X;; C X, ;41 for
all i, 5 € N. A digraph G on a topological space X has countable Borel
chromatic number, or xp(G) < Ny, if there is a Borel N-coloring of G.
Our first result generalizes Kechris—Solecki-Todorcevic’s characteriza-
tion of the existence of such colorings (see [KST99, Theorem 6.3]):

Theorem 1. Suppose that X is a Hausdorff space and (G, ;)i jen s an
increasing-in-j sequence of analytic digraphs on X. Then exactly one

of the following holds:

(1) There are Borel sets B; C X with the property that X = |,y Bi
and Vi,j € N xp(Gi; [ Bi) <N,.

(2) There exist a function f: N — N and a continuous homomor-
phism qb: N 5 X from (GO,k)kGN to (Gk,f(k))keN

We use 1r to denote the identity element of a group I'. The orbit
equivalence relation induced by a group action I' ~ X is the equiva-
lence relation on X given by » EX y <= 3y e T v-2 =y. More
generally, the orbit relation associated with a set A C I' is the binary
relation on X given by r RX y < € Ad-x=y. Aset Y C X
is A-lacunary if y RX 2 = y==zforall y,z € Y, and EX-complete
if X =TY.

We say that a Borel action I' ~ X of an analytic Hausdorff group
on an analytic Hausdorff space is (Borel) o-lacunary if there exist a
sequence (A, ),en of open neighborhoods of 1 and a cover (X,,),en of
X by Ef-invariant Borel sets with the property that there is a A,-
lacunary Eff"—complete Borel set B,, € X, for all n € N.

A topological group is tsi if it has a compatible two-sided-invariant
metric. Klee has shown that a Hausdorff group I' is tsi if and only if
there is a neighborhood basis of 1 consisting of conjugation-invariant
open sets (see [Kleb2, 1.5]). A topological group is cli if it has a
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compatible complete left-invariant metric, or equivalently, a compatible
complete right-invariant metric (see, for example, [Bec98 Proposition
3.A.2]). It is well known that every tsi group is cli (see, for example,
[BK96|, Corollary 1.2.2]). Our second result characterizes the class of
o-lacunary Borel actions of tsi Polish groups on Polish spaces:

Theorem 2. Suppose that T is a cli Polish group, (Ag)ren 1S a neigh-
borhood basis of 1r, X is a Polish space, and I' ~ X is a Borel action
with the property that RX is Borel for all open sets A C T'. Then at
least one of the following holds:

(1) The action ' ~ X is o-lacunary.
(2) There exist a subsequence (A} )ren of (Ax)ren and a continuous
homomorphism ¢: 28 — X from (G x)ren to (RX;E \R)A(k Dken.
: +

Moreover, if (Ag)ken is a decreasing sequence of conjugation-invariant
sets, then exactly one of these conditions holds.

Following the usual abuse of language, we say that an equivalence
relation £ on X is countable if |[z]|g| < R for all z € X. We use =x
and # y to denote the equality and inequality relations on X, as well as
[E, to denote the equivalence relation on 2N given by c Ey d <= 3n €
NVm > n ¢(m) = d(m). The product of equivalence relations E, on
X, for n € N, is the equivalence relation [[, .y En on [], oy Xn given
by (xn)nGN (HneN E”) (yn)nEN < VneN L En Yn- When N = 27
we use Fy X E4 to denote the product. In the further special case that
there exist n € N and a set X for which X, = X" and X; = X", we will
abuse notation by identifying Ey x E; with the equivalence relation on
XN obtained via the obvious identification of X x X" with X~. The
N-fold power of an equivalence relation F is given by EVV = [L.en E-

A reduction of a binary relation R to a binary relation S is a homo-
morphism from (R,~R) to (5,~S). An embedding of R into S is an
injective reduction of R to S.

Given a Borel action I' ~ X of a Polish group on a Polish space for
which E¥X is Borel, we say that EY is essentially countable if it is Borel
reducible to a countable Borel equivalence relation on a Polish space.
It is easy to see that if ' ~ X is o-lacunary, then EZ is essentially
countable (see Proposition . It is well known that E{—which is
clearly the orbit equivalence relation induced by a continuous action
of the abelian Polish group ((Z/2Z)<N)N—is not essentially countable
(see the remarks preceding Proposition [3.8)).

A topological group I' is non-archimedean if there is a neighbor-
hood basis of 1 consisting of open subgroups. It follows that a Haus-
dorff group I' is both non-archimedean and tsi if and only if there is
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a neighborhood basis of 1 consisting of normal open subgroups (see,
for example, [GX14, §2]). Our third result strengthens Hjorth-Kech-
ris’s theorem that if I' is a non-archimedean tsi Polish group, X is a
Polish space, I' ~ X is Borel, and E{X is Borel, then either F¥ is es-
sentially countable or there is a continuous embedding of EY into E¥
(see [HKOI1, Theorem 8.1]):

Theorem 3. Suppose that T' is a non-archimedean tsi Polish group,
(TCk)ken 18 a sequence of open subgroups of T', X is a Polish space,
I' ~ X is Borel, and E{ is Borel. Then exactly one of the following
holds:

(1) The action T ~ X is o-lacunary.
(2) There is a continuous embedding ¢: 2°N — X of EY into EX
that is a homomorphism from ((=)" x Ef)ken to (EX )ren.

In {I], we establish Theorem I} In §2] we consider the connection be-
tween o-lacunarity and condition (1) of Theorem [1} In §3] we describe
ways of refining condition (2) of Theorem [l And in We establish
Theorems 2 and Bl

1. A GENERALIZATION OF THE Gy DICHOTOMY

A set Z separates a set X fromaset Yif X C Zand Y NZ = 0.
Given sets X' C X, Y/ C Y, and R C X x Y, we say that (X', Y’) is
R-independent if RN (X' xY') = 0.

Proposition 1.1. Suppose that X and Y are Hausdorff spaces, Ax C
X, Ay C Y, and R C X XY are analytic, and (Ax,Ay) is R-
independent. Then there are Borel sets By € X and By C Y for
which Ax C Bx, Ay C By, and (Bx, By) is R-independent.

Proof. As the R-independence of (Ax, Ay) ensures that Ay is disjoint
from projyx((X x Ay) N R), and the latter set can be expressed as
projy ((projy(R) x Ay) N R)—and is therefore analytic (see, for exam-
ple, the proof of [Kec95l Proposition 14.4])—Lusin’s separation the-
orem (see, for example, the proof of [Kec95, Theorem 14.7]) yields a
Borel set By C X separating Ax from projy((X x Ay) N R). Then
(Bx, Ay) is R-independent, so Ay is disjoint from projy ((Bx X Y)NR),
and since the latter set is analytic, another application of Lusin’s
separation theorem yields a Borel set By C Y separating Ay from
projy ((Bx x Y) N R), in which case (Bx, By) is R-independent. X

Proposition 1.2. Suppose that X is a Hausdorff space, G is an ana-
lytic digraph on X, and A C X is a G-independent analytic set. Then
there is a G-independent Borel set B C X for which A C B.
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Proof. By Proposition [L.1], there are Borel sets B; C X such that A C
B; for all 1 < 2 and (B,;);< is G-independent. Set B = (,_, B;. X

Given sets M C N and a sequence s € 2V let A, denote the set of
sequences ¢ € 2V for which s C c.

Proof of Theorem [ To see that conditions (1) and (2) are mutually
exclusive, suppose that both hold, and fix i € N for which ¢~!(B;) is
non-meager, as well as a Borel coloring 7: B; — N of G; ¢¢;) | B;. Then
there exists m € N for which the set C' = (r0¢)~!({m}) is non-meager.
Fix s € 2<% such that C' is comeager in N, (see, for example, [Kec95)
Proposition 8.26]), as well as n € N for which i = k, and s C s,.
Define ¢: N, ) = Ns,~1) by t(sn ~ (0) ~ ¢) = s, ~ (1) ~ ¢, for all
c € 28 As ¢ is a homeomorphism, the set C' N ¢~(C) is comeager in
N, ~0) (see, for example, [Kec93, Exercise 8.45]). Butif ¢ € Cne=(C),
then 6(c) (Gig) | Bi) (60 0)(c) and (0 6)(c) = (w0 600)(c) = m,
contradicting the fact that m is a coloring of G y;) [ B;.

It remains to show that at least one of conditions (1) and (2) holds.
We can assume that, for all ¢ € N, there exists j € N with the property
that G;; # (), since otherwise condition (1) holds trivially. By removing
a finite initial segment of (G;;)jen for all @ € N, we can therefore
assume that G, ; # (0 for all 4, 7 € N, in which case there are continuous
surjections ¢; ;: N¥ — G, ;, for all i,j € N. Letting proj, denote
projection onto the k" coordinate, it similarly follows that there is a
continuous surjection ¢x: NN — UZ.JGNJ€<2 proj,(Gi;)-

We will recursively define decreasing sequences (X;)a<w, of Borel
subsets of X such that X7, € X, and xp(Gi; [ ~X7;) < N for all
a <w and 4,5 € N, 50 xp(Gij [ ~Upeny Xi%) < No for all 4,5 € N,
thus condition (1) holds if and only if it holds on [,y U;ey Xfj. We
begin by setting X, = X for all i,j € N. We define X}, = (N, ., X?;
for all 7,5 € N and limit ordinals A < w;. To describe the construction
of Xf“;r ! from X7, we require several preliminaries.

We say that a quadruple a = (n?%, f% ¢%, (V) pene) is an approxi-
mation if n® € N, f*: {k, | n < n"} — N, ¢*: 2" — N and
P 2n 7 N™ for all n < n®. We say that an approximation b is
a one-step extension of an approximation a if:

o n=n—1.

o fo=f 1 {kn | n<n}.

o Vi < 2Vs € 2" ¢%(s) C ¢¥(s ~ (i)).

o Vi < 2Vn < n%s € 2V " d(s) C b (s ~ (7).
We say that a quadruple v = (n7, f7, ¢, (¥))n<nv) is a configuration if
n €N, f1:{k, | n<n’} >N, ¢7: 27 — NN g7 20" =1=n 5 NN for
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alln <n?, and (Y, pr(k) 097)(s) = ((9x 09") (s ~ (i) ~ 5))ic2 for all
n <nY and s € 27!, We say that a configuration ~ is compatible
with an approximation a if:

o n=n".

.« fo=f7.

o Vs € 2™ ¢%(s) C ¢(s).

o Vn < n%Ws e 2" i (s) Ch)(s).
We say that a configuration vy is compatible with a sequence (X ;); jen of
subsets of X if there is an extension f: N — N of f7 with the property
that (¢x 0 ¢7)(2"") C MNien Xi,f(i)- We say that an approximation a is
(X )i jen-terminal if no configuration is compatible with both a one-
step extension of @ and (X ;); jen. Let A(a, (X;;)ijen) denote the set
of points of the form (¢x o ¢?)(s,a), where -y varies over configurations
compatible with both a and (X;;);jen. Note that if (X; ;)i en is a
sequence of Borel sets, then A(a, (X; ;)i jen) is a continuous image of a
Borel subset of N¥, and is therefore analytic.

Lemma 1.3. Suppose that (X; ;)i jen s a sequence of subsets of X and
a is an approzimation for which k,. € dom(f*) and A(a, (X;;)ijen) is
not G, fa(k,q)-independent. Then a is not (X; ;)i jen-terminal.

Proof. Fix configurations vy and v;, compatible with a and (X ;); jen,
for which ((¢x © ¢7)(8pe))ic2 € Gh,a fo(k,q)- Then there exists b € NN
such that ¥y, . o) (0) = ((¢x © ¢77)(Spa))ic2. Let v be the config-
uration given by n? = n® + 1, f7 = f% (s ~ (i)) = ¢%(s) for
all i < 2 and s € 2" Y)(s ~ (i) = ¢Ji(s) for all i < 2, n < n?
and s € 2! and ¢.(0) = b. Then the unique approximation
with which ~ is compatible is a one-step extension of a, so a is not
(Xi,)ijen-terminal. =

Lemma 1.4. Suppose that (X; ;)i jen is a sequence of subsets of X, a
is an approzimation for which k. ¢ dom(f®), and there exists { € N
such that A(a, (X, )ijen) is not Gy, . -independent. Then a is not
(X )i jen-terminal.

Proof. Fix configurations vy and 7, compatible with a and (X ;); jen,
for which ((¢x 0 ¢")(Snae))ic2 € Gi,. - By increasing ¢ if necessary, we
can assume that (¢x o $7°)(2") U (px 0 ¢™)(2"") C X}, .. Fix b € NN
such that ¢y, , /(b)) = ((px0¢")(Spa))i<2, and let v be the configuration
given by n” = n®+ 1, f7(k) = fok) for all k < kpa, fY(kpa) = ¢,
& (s~ (i)) = ¢i(s) for all i < 2 and s € 2™, Y7 (s ~ (i)) = ¥)i(s) for
all i <2, n < n® and s € 2" 7""! and ¢.(0) = b. Then the unique
approximation with which v is compatible is a one-step extension of a,
so @ is not (X ;); jen-terminal. =
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As Proposition ensures that every G, j-independent analytic set
is contained in a G; j-independent Borel set, Lemmas(1.3|and [T.4] imply
that if (X, ;) jen is a sequence of Borel sets and a is an (X, ); jen-
terminal approximation, then there is a Borel set B(a, (X;;)ijen) 2
Aa, (Xij)ijen) that is Gy, o, ja(k,.)-independent if k,. € dom(f?), and
Gl i-independent for all ¢ € N if k. ¢ dom(f*).

We finally define X,‘jzrl to be the difference of Xp', and the union of
the sets of the form B( (X5)ijen), where a is an (X;); jen-terminal

i.j
approximation, kn. = k, and f®(kya) > € if kpe € dom(f).

Lemma 1.5. Suppose that o < wy and a is an approrimation that is

not (Xio";l)Z-’jeN—terminal. Then there is a one-step extension of a that
is not (X;)ijen-terminal.

Proof. Fix a one-step extension b of a for which there is a configuration
7 compatible with b and (X'); jen. Note that if k,» € dom(f?), then

(px 0 ") (sn0) € Xa+1fb(k so A(b, ( z])l jen) N XQ-H bk, 1) # (), thus
b is not (X)ijen- termlnal And if k,» ¢ dom(f?), then “there exists
¢ € N for which (¢x 0¢7)(s,) € X,‘:‘j s0 A(b, (X7)ijen) ﬂXO‘“g £ 10,
thus b is not (X7;); jen-terminal. 5

Fix a < w; for which the families of (X7");jen- and (Xl;rl)i,jeN—

terminal approximations are one and the same, and let ag be the unique
approximation such that n® = 0. Then A(ao, (Xij)ijen) = ox(NY) N
Nien Ujen Xij for all sequences (X; ;) jen of subsets of X, so if ag is
(X7;)ijen-terminal, then Xg“zrl C X§0 \ (ex(NY) N Ny Ujen X7) for
all ¢ € N, so ﬂzEN U]eN XQH (UeeN 3@\(¢X(NN)mﬂzeN UjeN Xﬁj))ﬂ
Niso Ujen X7 As the latter set is disjoint from ¢x (NV), it follows that
condition (1 ) holds on (N;eny Ujen Xi 1, thus condition (1) holds.
Otherwise, by recursively applylng Lemma we obtain one-step
extensions a,.; of a, that are not (ij)i,jeN-terminal, for all n €
N. Define f: N — N by f = U,y f*, define ¢: 2V — NV by
P(c) = U,en @™ (c I n) for all ¢ € 2¥, and define ¢,: 2% — NN by
Vn(c) = Uppen ¥2m+14m(c | m) for all ¢ € 2% and n € N. To see that
¢x o ¢ is a homomorphism from (G i)ren to (G, fk))ken, we will show
that (14, 7(e,) © Un)(€) = ((6x 0 B)(sn ~ (i) ~ €))ics for all ¢ € 2"
and n € N. For this, it is sufficient to show that if U C X x X is an
open neighborhood of (¥, ¢k, © ¥n)(c) and V' C X x X is an open
neighborhood of ((¢x o @)(s, ~ (i) ~ ¢))i<a, then UNV #£ 0. To-
wards this end, fix m € N for which 1y, ) (Nyons14m ) € U and
[Lics @x (Ngons1om(s,~(i)~s)) SV, where s = ¢ | m. As apq14m is not
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(X)ijen-terminal, there is a configuration v compatible with @y, 414

Then (Yr, ) 0¥))(s) € U and ((¢x 0¢)(sp, ~ (i) ~ 5))ica € V, thus
Unv #40. =

2. LACUNARY SETS

We provide the proof of the following straightforward observation for
the reader’s convenience:

Proposition 2.1. Suppose that T' is a topological group, D C T' s
dense, and U C T" is a non-empty open set. Then I' = DU = UD.

Proof. Note that if v € T, then yU~! and U~!y are non-empty and
open, so D N~U~! and U=ty N D are non-empty, and it follows that
ye(DNAU MU C DU and y € U(DNU'y) CUD. b

We next show that o-lacunarity yields the corresponding special case
of condition (1) in Theorem L}

Proposition 2.2. Suppose that T is an analytic Hausdorff group, (A;)ien
15 a neighborhood basis of 1 consisting of conjugation-invariant open
sets, X is an analytic Hausdorff space, and ' ~ X is a o-lacunary Bor-
el action with the property that RX is Borel for all open sets A C T.
Then there are Borel sets B; € X with the property that X = J,.y Bi

Proof. By breaking X into countably-many FE{-invariant Borel sets,
we can assume that there is an open neighborhood A C T" of 1r for
which there is a A-lacunary E-complete Borel set B C X.

Fix ¢ € N for which there is an open neighborhood A’ C I' of 1p
such that (A)7'A;A" C A, To see that Vj € N xp(RX, \ RX,) < Ny,
suppose that j € N, and fix a non-empty open set A” C A’ for which
A//(A//)—l g Aj-

Lemma 2.3. The set A"B is (RX. \R)A(j)—mdependent.

Proof. Suppose that x”,y" € A”B are R)A(i—related, and fix 0y, 9, € A"
for which the points z = (07)~"-2” and y = (d;)~'-y" are in B. Then =
and y are Ré,,),l A, an-related, so RX-related, thus equal, and it follows

that " and y” are R}, n»-1-related, thus R} -related. 5

For all v € I, Lemma [2.3] and the conjugation invariance of A; and
A; ensure that yA"B is (RX \R)A(j)—independent. As yA" B is analytic,
Proposition (1.2 therefore yields an (R}, \ RX)-independent Borel set
B, C X containing yA"B.
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Fix a countable dense set D C I'. As Proposition ensures that
I' = DA, it follows that X = I'B = |J ., 7A"B = U,cp B, thus

XB(R)A(Z \ R)A(j) < Ny. X

Given a digraph G on a set X, we say that aset Y C X is a G-clique
if all pairs of distinct points of Y are in G.

Proposition 2.4. Suppose that T is a separable group, X is a set,
I' ~ X is an action, and A C T is an open neighborhood of 1r. Then
every EX -class is a countable union of (RX \ =x)-cliques.

Proof. Fix a countable dense set D C I' and a non-empty open set
A C T for which AA=' C A. Observe that if d € D and = € X, then
v,z € Ad-x = 2z € Ad(Ad)"'y = ANy C Ay, so Ad - x is an
(RA \ =x)-clique, and T'z = |J,., Ad - z by Proposition . X

We next show that o-lacunarity follows from the corresponding spe-
cial case of condition (1) in Theorem [1}

Proposition 2.5. Suppose that I" is a cli Polish group, X is an analytic
metric space, I' ~ X is continuous, (A;)en is a neighborhood basis of
Ip, and there are Borel sets B; € X with the property that X = J,cy Bi
and Vi,j € N xp((RX.\ R)A(j) I B;) < No. Then I' ~ X is o-lacunary.

Proof. We can assume that I' is not discrete, since otherwise I' ~ X is
trivially o-lacunary. So, by passing to a subsequence of (A;);en, we can
assume that (A;11)"' U (A1) C A, for all i € N. By breaking each
B; into countably-many Borel sets, we obtain Borel sets B/, C X and
in € N with the property that B, is (R)A(in \R)A(in%)—independent and
xs((RX, \R)A(j) [ B) < Ng forall j >i,+4and n € N. As a result of
Montgor;lery—Novikov ensures that the class of Borel sets is closed under
category quantification (see, for example, [Kec95, Theorem 16.1]), it
follows that the function ¢: X — N, given by ¢(z) = min{n € N |
J*v € ' v-x € B}, is Borel. By passing to the EX-invariant Borel
sets of the form ¢~'({n}), where n € N, it is sufficient to show that if
i€ Nand B C X is an (R}, \ R3,,,)-independent Borel set such that
Vj>i+4 xp((RX,\RX,) | B) <Ngand Vo € XIFy €T v -z € B,
then there is a A; o-lacunary EX-complete Borel set.

Lemma 2.6. The restriction F = R)A(i I B is an equivalence relation.

Proof. To see that E is symmetric, observe that if x E y, then the
(RX, \ RR,,,)-independence of B ensures that « RX_ y,soy R}, «,
thus y E x. To see that E is transitive, note that if x £ y E z, then
the (RX, \ RA,,,)-independence of B ensures that = RX_ . y RX, . 2,
SO X R)A(HQ z, thus x E z. 53
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Propositionensures that F has countable index below EX | B, so
theset B'={x € B|3*y €'z £ v-z} is E¥-complete. By replacing
B with B’, we can therefore assume that Vo € B3*y e T'z E v - .

Fix positive real numbers €; — 0 and Borel colorings ¢;: B — N of
(RX, \ RX,) | B such that diam ¢;'({n}) < ¢; for all j > i + 4 and
n € N. For all j > i+ 3 and x € B, let s;(z) be the lexicographically
minimal sequence s € N7=*=3 for which there are non-meagerly many
v € I' such that v -z € [z]p N[, 4<p<; ¢ '({s(k —i—4)}), and define
Cj=A{z € B sj(x) = (ck())iracns;}-

A ray from a point x € B through (C});>its is a sequence (§;),>i+3
such that §; € Aj and 9, ---d;43-2 € Cjqq for all j > i+ 3. To see that
such rays exist, set ;13 = =, and fix x; € C; N [z]g for all j > i + 4.
As the (RX \ Rﬁj)—independence of C; ensures that £ [ C; C R)A(j,
there exists 0; € A; such that J,-x; = z,44, for all j > i+ 3. But then
(0;)j>i+3 is a ray from x through (C});>i+3.

As A? C Aj_; forall j > i+3, a straightforward induction shows that
if 4 +3 < j S k‘, then Ak s Aj g Ajfl. It follows that if (5j)j2i+3 is a
ray from x through (C});>iy3, then 6y ---; € A;_; forallk > j > i+3,
50 (8 - -+ 8i43) j>i+3 is Cauchy with respect to every compatible complete
right-invariant metric on I', and therefore converges to some § € A, .

Observe now that if (67);>i43 and (07);>3 are rays from points x
and y in B through the sequence (C});>i+3, and §” and §¥ are the
corresponding limit points, then (6%)71A;;26% C (6¥)7'A;11 C Ay, so
0" -z RX,, 0y = = RX, y = a E y, and the fact that
diam C; — O ensures that t £y = 0 -2 = Y y. Define¢: B — X
by setting ¢(z) = y if and only if there is a ray (0,);>i+3 from x through
(C})j>its for which §; - - - §;43-x — y. As graph(¢) is analytic, it is Bor-
el (see, for example, the proof of [Kec95, Theorem 14.12]), so the fact
that ¢(B) = {z € X | F*y € T' ¢(y-x) = x} ensures that ¢)(B) is Borel.
But the above remarks also imply that the latter set is A; s-lacunary,
and it is clearly EX-complete. X

We close this section by noting that o-lacunarity yields essential
countability. By the Lusin-Novikov uniformization theorem (see, for
example, [Kec95, Theorem 18.10]), it is sufficient to show the following:

Proposition 2.7. Suppose that I' is a Polish group, X 1is a Polish
space, and I' ~ X 1s a o-lacunary Borel action. Then there is an
EX-complete Borel set B C X such that EX | B is countable.

Proof. Tt is sufficient to show that if A C I' is an open neighborhood
of 1r and Y C X is A-lacunary, then E | Y is countable. But this is
a direct consequence of Proposition [2.4] X
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Remark 2.8. Although we shall have no need for it here, it is worth
mentioning that—after seeing a draft of this article and having several
conversations with myself on the topic—Grebik established the con-
verse of Proposition in the special case that F¥X is Borel. While
this can be combined with [HK01, Theorem 8.1] to obtain a version
of Theorem one of the primary motivations underlying this pa-
per was, in fact, to provide a simpler proof of [HK0I, Theorem 8.1].
The idea behind Grebik’s argument is as follows: Appeal to the Lu-
sin-Novikov uniformization theorem to obtain a Borel uniformization
7: X — B of EX, note that for all open neighborhoods A C T’
of 1r, the sets Xpo = {z € X | V0 € A n(z) = 7(0 - x)} and
Br={yeB|3Fvel (y-ye€ Xaand n(y-y) =y)} are Borel, fix a
Borel uniformization ma: Ba — Xa of {(y,2) € Ba X Xa | () = y}
(see, for example, [Kec95, Theorem 18.6]), and observe that the set
Ap = ma(Ba) is Borel (see, for example, [Kec95, Theorem 15.1]). But
one can easily check that Aa is A-lacunary for every open set A C I’
such that A2 C A, and (J{Aa | A is an open neighborhood of 1r} is
EX-complete (see [Gre20]).

3. COMPOSITIONS

Given n € N and a sequence (8;);<, of elements of N<N  let D, si
denote the concatenation s; ~ s; ~ -+ ~ s,_1. Given a sequence
(Sn)nen of elements of N<N/ let @, s, denote U, oy D;-,, Si-

Proposition 3.1. Suppose that C C 2V is comeager and f: N — N.
Then there is a continuous homomorphism ¢: 28 — C' from (Go k) ken

to (Go,f(k))ken.
Proof. Fix dense open sets U,, C 2" for which (N, Un € C.

Lemma 3.2. For alln € N and ¢: 2" — 2<N, there ewists t € 2<N
such that Ny~ C U, for all s € 2",

Proof. Fix an enumeration (S, )m<on of 2", and recursively find t,, €
2N with Ny(s,)~@,., 1, C Un for all m < 2". Set t = @, putm. &

Set £y = 0 and define ¢y: 20 — 2% by ¢o(0) = (. Given n € N,
(, €N, and ¢,: 2" — 2 appeal to Lemma to obtain a sequence
t, € 2<N such that N%(S)Atn C U, for all s € 2". Then there exists
m, € N for which k,,, = f(k,) and ¢,(s,) ~ t, C s, as well as
a unique extension wu, € 2™~ of t, such that s,,, = ¢n(5,) ~ Un.
Set £,,.1 = m, + 1, and define ¢,,,: 2" — 241 by ¢, 1 (t ~ (1)) =
On(t) ~u, ~ (i) for all i < 2 and t € 2.
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Define ¢: 28 — 2 by ¢(c) = U,en @nlc I n) for all ¢ € 2% To
see that ¢(2V) C C, note that if ¢ € 2N, then ¢(c) € Ny, ., (ci(ns1)) C
Nou(einy~tn € Uy for all n € N, thus ¢(c) € ,eyUn € C. Given
k € N, to see that ¢ is a homomorphism from Gy, to Gg s(x), observe
that if c € 2Y, n € N, k = k,,, and d = @,y Un+14m ~ (c¢(m)), then
P(sn ~ (i) ~ ¢) = bnga(sn ~ (1)) ~ d = du(sn) ~ up ~ (i) ~ d =
Sm, ~ (1) ~d for all i < 2, so the fact that k,,, = f(k,) ensures that
$5n ~ (0) ~ ©) o gy 050 ~ (1) ~ ). x

For all n € N, define X< = J,,_,, X™. For all s,t € 2<, define
G&t = {(S ~ (Z) ~t~ C)i<2 | Cc € 2N}

Proposition 3.3. Suppose that (R;.)jenn>0 i @ sequence of analytic
binary relations on 2 such that \J,,, ., Go g, € Ujen Rjn for alln > 0.
Then there are functions g,: 2<" — N and a continuous homomor-
phism ¢: 2N — 2N from (G 1. )ken to (Gox)ren that is also a homomor-
phlsm fmm (Gsn,|t|,17t>n>0,t62<" to (Rgn(t),n)n>0,t62<"-

Proof. We will recursively construct m,, € N and u, € 2<V for all
n € N, from which we define ¢ ,y: 2™ — 2N by ¢ (t) =
DB, Uitm ~ (t(i)) for all natural numbers m < n and sequences
t €2"™ as well as g,,: 2<" — N and open sets U;,, C 2" for all j € N
and n > 0, satisfying the following conditions:

(1) Vj € NVYn > 0 U;,, is dense in N, .

(2) Yn > 0Vc € ﬂjGN U, Vt € 2<"

(¢[o,n)(8n—|t\—1 ~ (2) - t) - C)z’<2 < Rgn(t)m'

(3) VYn > OVt € 2<" N¢[n7|t‘,n)(t)’\un C Ujgfn—1t-

(4) Vn € N (kp,,, = kn and s, = Po,n)(S5n) ™ Un).

We begin by setting mg = 0 and ug = (). Suppose now that n > 0
and we have already found (mg)r<, and (ug)g<n, as well as (gr)o<k<n
and (Uj k) jen,0<k<n, satisfying the corresponding fragments of the above
conditions. For all g: 2<" — N, let B, be the set of ¢ € 2" such that
(¢[O,n)($n7|t|fl ~ (’L) ~ t) ~ C)i<2 € Rg(t),n for all ¢ € 2<™. Note that if
ce 2V i <2 andt € 2<", then condition (4) ensures that

Plogn) (Sn—jt—1 ~ (i) ~ ) ~c
= ®0,n—1t)) (Sn—jt)-1 ~ () ™ Ppu—pom) (¢) ~ €
= Gpo.n—1t1-1) (Sn—jt)-1) ™ Un—j—1 ~ () ~ Ppu—jem) () ~ €
= Sm, gy~ (1)~ Py () ~ ¢,

80 (o) (Sn—jy—1 ~ (1) ~ t) ~ Cica € Gog, -, © Ujen By, thus
there exists g: 2™ — N for which ¢ € B,. Fix g,,: 2" — N for which
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By, is non-meager, ug,, € 2= for which By, is comeager in N, ., and
dense open sets U;,, C N, such that ﬂjGN Ujn € B,,. Note that if
t € 2" and u € 2< extends g, then Uy ,—p is dense in Ny~
(by our choice of Uy, when t = (), and by condition (1) and the fact
that w,_j)| C @p—ji,n)(t) when ¢t # 0). Fix an enumeration (¢, )k<an—1
of 2", and recursively find extensions wujy1, € 2<N of Uy, such that
Nd)[n—\tk’n\,n)(tk,n)’\uk+1,n - Ultk,n\,n—ltk,nl forall k<2 —-1. Fixm, € N
for which ky,, = k, and ¢pon)(sn) ~ Ugn_1,n E Sm,, and let u, be the
unique extension of ugn_y, for which s,,, = @) (5n) ~ Un.

Define ¢pno0): 2V = 2N by @pmoo)(€) = Upen Pimomn) (¢ [ n) for all
cc2¥ and m € N,

To see that ¢jg o) is a homomorphism from Gg to G, for all k € N,
note that if ¢ € 2%, n € N, k = ky,, and d = @, Unt14m ~ (c(m)),
then condition (4) ensures that ¢ )(s, ~ (1) ~ ¢) = Gnt1) (S0 ~
(7)) ~d = Ppn)(sn) ~ un ~ (1) ~d = Sy, ~ (i) ~dfor all i <2, so
P0,00) (80 ~ (0) ~ ) Gog Ppo,00) (S0 ~ (1) ~ ).

Given n > 0 and t € 25", to see that ¢y ) is a homomorphism from
Gs,_jy_1.t t0 Ry, ()., note that if ¢ € 2N then condition (3) ensures that
N¢>[n,m)(c((m—n))ﬂum C Up—nyn for all m > n, so ¢p00)(c) € ﬂjeN Ujn. As
Ppo,00) (Sn—ftj-1 ~ (1) ~ T~ €) = Gy (Sn—jt—1 ~ (1) ~ 1) ~ Pln,o0)(c) for
all i < 2, it follows that (¢(o,00)(Sn—gj—1 ~ (i) ~ t ~ ¢))ic2 € Ry, ()
by condition (2). X

For all sets N, let [N]<¥ denote the family of finite subsets of N.
For all sequences ¢,d € 2V, set A(c,d) = {n € N | ¢(n) # d(n)}.
Define §;: 28N x 28N 5 N U {Rg} by d;(c,d) = |A(e,d) N ({i} x N)|
for all ¢,d € 2N and 7 € N.

A homomorphism from a function f: X x X — N to a function
g: Y xY = Nisamap ¢: X — Y such that f(w,z) = g(p(w), ¢(z))
for all w,x € X. More generally, a homomorphism from a sequence
(fir X x X = N)er to a sequence (g;: Y XY — N)iey is a map
¢: X — Y that is a homomorphism from f; to g; for all 7 € I.

Proposition 3.4. Suppose that C C 2N is comeager. Then there is

a continuous homomorphism ¢: 2N — O from (6;)ien to (6;)ien-
Proof. Fix dense open sets U,, C 2" for which (1,5 U, C C.

Lemma 3.5. For all F,G € [NxN]<® ¢:2F — 26 andn € N, there
exist H € [~G|<™ and t € 27 such that N¢(S)Ut C U, for all s € 2F.

Proof. Fix an enumeration (s,,),,<o7 of 2f°, and recursively find pair-
wise disjoint sets Hy, € [~G]< and t,, € 2" with Ny(s,.uy,.. ¢ € Un

for all m < 2/F1. Define H =, _yir| Hm and t = J,, _o/r| tm. X
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Fix an injective enumeration (i, j,)neny of N X N and for all n € N,
set , = {(im,jm) | m < n}. Set Gy = 0, and define ¢g: 20 — 260
by ¢o(0) = 0. Given n € N, a set G,, € [N x N|<® and a function
¢n: 2 — 267 appeal to Lemma to obtain H, € [~G,]<¥ and
t, € 2 such that Ny, (o, C U, for all s € 2, fix k, € N for
which (i, k,) ¢ G, U H,,, set G,11 = G, U H, U{(in, k,)}, and define
¢n+1: 2Fnt1 — 20 by ¢n+1(3) f Gn = ¢n(8 f Fn)v gbn-‘rl(s) r H, = ln,
and ¢,11(8)(in, kn) = 5(in, jn) for all s € 2Fn+1,

Set Goo = U,en Gn, and let ¢: 28N — 28N he the function given
by supp(¢(c)) € Goo and ¢(c) | Goo = U,en @nlc | F,) for all ¢ €
2N To see that ¢(2"VN) C € note that if ¢ € 28N then ¢(c) €
N¢n+1(CFFn+1) - N(bn(cFFn)utn C U, for all n € N, thus gb(c) S ﬂneN U, C
C. To see that ¢ is a homomorphism from 9; to d; for all i € N, note
that if m < n, then (i, k) # (in, kn), since (im, kn) € Gy C G
but (in, kn) & Gn, and A(é(c), ¢(d)) = {(in, kn) | n € N and (i, jn) €
Ale,d)} for all ¢, d € 2NN, b

Given F C Nx Nand i € N, set A;(c,d) = A(c,d) N (¢ x N) for all
c,d € 2F and define D; = {(c,d) € 28N x 2N | A (¢, d) = F'}. For
all k € N, let (=n)F x ESN x (=40)N denote the equivalence relation on
(2N with respect to which two sequences ¢, d € (2Y)N are equivalent if
and only if there exists m > k with the property that c¢(¢) # d({) —
(k < ¢ < m and c(f) Ey d(¢)) for all £ € N. We will abuse notation by
identifying each binary relation on (2V)N with the corresponding binary
relation on 28N,

Proposition 3.6. Suppose that D C 28N x 9NN 45 closed and nowhere

dense inD; p and R C XN 5 ONXN s meager in D; r, for allt € N and
F € [i x N]<®o. Then there is a continuous homomorphism ¢: 28N —
2N from ((=90)* x Eg™ x (=90)")ken to ((=91)" x Eg™ x (=91)")ren
that is also a homomorphism from (Fquxn, ~EY) to (~D,~R).

Proof. As the function f: 2W<N x oNxN-_y oNxN o oNxN *given by
f(e,d) = (d,c), is a homeomorphism under which each D; g is invari-
ant, it follows that each f [ D;  is a homeomorphism, so f(D) is closed
and nowhere dense in each D; g, thus by replacing D with D U f(D),
we can assume that D is symmetric. For all i € N and F € [i x N]<%o,
fix a decreasing sequence (U; g )nen of dense open subsets of D; p \ D
whose intersection is disjoint from R. As each f(U; p,) is a dense open
subset of I;  \ D, by replacing each U, py with U; pn N f(Ui pp), we
can assume that each U; g, is symmetric.

Lemma 3.7. For all F,G € [N x N|<% ¢:2F — 2¢ and i,n €
N, there erist H € [~G]<™ and to,t; € 2% with the property that
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Ai(to,t1) = 0 and D a,(a(s0).6(s1)) N [rca Notsiyon, S Ui as@(so)(sn)m
for all s, s, € 2F.

Proof. Fix an enumeration (8o, $1.m)m<qir 0of 25 x 27 and recursively
find pairwise disjoint sets H,,, € [~G]<™® and tom, t1m € 2Hm guch that,
for all m < 4/F1 the set A;(tom,t1.,) is empty and

D, As(6(s0.m),0(51.m)) N Lo Notskm)0Upnm tie S Ui (@(s0,m)6(51.m))in-
Define H = J,,, 417 Hp and t, = U, g7 teom for all k < 2. =

Fix an injective enumeration (i,, j,)neny of N X N and for all n € N,
set F, = {(im,jm) | m < n}. Set Gy = 0, and define ¢: 20 — 2¢0
by ¢o(@) = 0. Given n € N, a set G,, € [N x N|<®_and a function
¢n: 20 — 267 appeal to Lemma to obtain H, € [~G,]<¥ and
tO,natl,n € 2Hn such that Ain<t0,nat1,n) = (Z) and Din,Ain(¢n(30)7¢n(31)) N
[kco Nontsvtin € Uit 0 (s0).6n(s1))n for all so, 51 € 277, set Ghyy =
and ¢p41(8) | Hy = tyiy o) -

Set G, = UneN G, and let ¢: 2VN — 9NXN he the function given
by supp(¢(c)) € Go and ¢(c) | Goo = U, e @n(c | F,) for all ¢ € 288,

To see that ¢ is a homomorphism from g« to ~D, note that if
c,d € 2N are distinct, then there exists n € N with the property
that c(in, jn) # d(in, jn), 50 (¢(c),0(d)) € Ui, (@nlclFu)bn(diFu))ms
thus (¢(c), ¢(d)) & D.

To see that ¢ is a homomorphism from (=4n)* x ESN x (=) to
(=0)* x EgN x (=N for all k& € N, note that if ¢,d € 2N are
((=0)" x EgN x (=g0)N)-related, then Ag(tei ju)ims bd(ingn)m) = 0 for
all n € N, and ¢(ip, jn) = d(in, jn) for all but finitely many n € N, so
A(¢(c), #(d)) is a finite subset of (N'\ k) x N.

To see that ¢ is a homomorphism from ~E) to ~R, observe that
if ¢,d € 2N are El-inequivalent, then there is a least k € N for
which 0x(c,d) = Ry. Set F' = Ag(c,d), fix n € N sufficiently large
that F' C F),, define G = Ag(dn(c | Fr), dn(d | Fy)), and observe that
Ar(¢p(c),¢(d)) = G. As there are arbitrarily large m > n for which
im = k and c(im, jm) 7# d(im, jm), and therefore (¢(c), ¢(d)) € Uk.c.m,
it follows that (¢(c), ¢(d)) ¢ R. =

A subset of a topological space is F, if it is a countable union of
closed sets, and Gy if it is a countable intersection of open sets. For all
sets N and sequences ¢ € 2%V, let ¢ denote the element of 2V given by
¢(n) = 1—c(n) for all n € N. As the Lusin-Novikov uniformization
theorem and standard change of topology results (see, for example,
[Kec95, §13]) ensure that every countable Borel equivalence relation on



16 B.D. MILLER

a Polish space is Borel isomorphic to an F,, Borel equivalence relation
on a Polish space, the following well-known fact ensures that E is not
essentially countable:

Proposition 3.8. Suppose that X is a second countable space and E
1s an F, equivalence relation on X. Then there is no Baire measurable
reduction ¢: 2N — X of EYf to E.

Proof. Suppose that ¢: 28N — X is a Baire measurable homomor-
phism from ~E{ to ~E. Then there exist a dense G; set C' C 2NN
for which ¢ | C is continuous (see, for example, [Kec95, Proposition
8.38]), dense open sets U, C 2N such that C' = (0, Uy, and open
sets V, € X x X with the property that ~E = (1, . Va-

Fix an enumeration (i,, j,)neny of Nx N. Set Fy = () and sq = to = 0.
Given n € N, F,, € [N x N|<¥_and s,,t, € 2 fix G, € [~F,]<M
and u,, € 29" such that N, ., C U,, as well as H, € [~(F, UG,)]<™
and v, € 2" such that N, w00, C Up. Set F! = F, UG, U H,,
st = s, Uu, Uy, and t], = t, Uu, Uv,, and define ¢,,: Ny — Ny, by
Yo(cUdUs)) =cuduUt, for all ¢ € 2N\ and d € 207N\
Fix ¢, € C Ny, (C) and set d, = ¥,(c,). As these points are Ej-
inequivalent, it follows that the points x,, = ¢(¢,) and y,, = ¢(d,,) are
E-inequivalent, and therefore V,-related. Fix F,y; € [N x N]<% such
that FU{(in, jn)} € Fny1 and ¢(CON, 15, ) X (CONg 15, ) S Vi,
and define s,.1 = ¢, | Fyhy1 and ¢, = d,, | Fu1.

The fact that N, ,,,N,,,, C U, for all n € N ensures that the
sequences ¢ = |J,en5n and d = J,cytn are in C, in which case
(¢(c),0(d)) € p(CNN,,, ) xP(CNN,, ) €V, forall n € N, thus ¢(c)
and ¢(d) are E-inequivalent. As the fact that A, (c,d) = An(sy, t,) for
all n € N ensures that ¢ E d, it follows that ¢ is not a homomorphism
from EY to E. b

4. A STRENGTHENING OF THE EJ DICHOTOMY
We begin this section with the following;:

Proof of Theorem[3. To see that conditions (1) and (2) are mutually

exclusive when (Ay)gen is a decreasing sequence of conjugation-invari-

ant sets, observe that if I' ~ X is o-lacunary and (A} )ken is a subse-

quence of (Ag)ken, then (A} )ren is also a neighborhood basis of 1r, so

Proposition gives rise to Borel sets B; C X such that X = J,. Bi

and Vi,j € N xg((RX, \ RX,) | B;) < g, in which case Theorem
i J

rules out the existence of a continuous homomorphism from (G )ren
tO (fi)(;c \RX/ )keN.

k+1
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To see that at least one of the conditions holds, note first that condi-
tion (2) is equivalent to the apparently weaker statement in which ¢ is
merely Borel, since we can always pass to a dense Gy set C' C 2¥*N on
which ¢ is continuous (see, for example, [Kec95, Theorem 8.38]), and
then compose ¢ | C' with the function obtained by applying Proposi-
tion 3.1/ to C' and the identity function. By [BK96, Theorem 5.2.1], we
can therefore assume that I' ~ X is continuous. We can also assume
that I" is not discrete, since otherwise I' ~ X is trivially o-lacunary.
So, by passing to a subsequence, we can assume that (Ag)gen is de-
creasing. By Theorem [1| and Proposition [2.5] it is therefore sufficient
to show that if there exist f: N — N and a continuous homomorphism
¢: 2% — X from (Gop)ren to (R}, \ RX,, )ren, then condition (2)
holds. Towards this end, note that f(k) > k for all k¥ € N, and let
(A} )ken be the subsequence of (Ag)ren given by Ay = Ak for all
k € N. By one more application of Proposition [3.1] there is a con-
tinuous homomorphism : 28 — 2N from (Ggz)ren to (Go, rx(0)) ke,
in which case ¢ o9 is a continuous homomorphism from (G x)ken to
(R \ B, e .

As a corollary, we obtain an approximation to Theorem [3| that goes
through for all tsi Polish groups:

Theorem 4.1. Suppose that T is a tsi Polish group, (I'y)ren is a se-
quence of open subgroups of I', X s a Polish space, I' ~ X is Borel,
and RX is Borel for all open sets A C I'. Then at least one of the
following holds:

(1) The action I' ~ X is o-lacunary.
(2) There is a continuous injective homomorphism ¢: 2N — X
Jrom ((=g2)% x E§Y X (=90)¥)pen to (Ef ren that is also a

homomorphism from ~EY to ~EX.

Proof. Fix a neighborhood basis (Ag)ren of 1g and a conjugation-
invariant open neighborhood Aj C I'o N Ay of 1p, and set Aj =
AN (A~ Given k € N and an open neighborhood A} C T'y N A
of 1r, fix an open neighborhood AJ,; C I'y41 N Agyy of 1p such that
(AY,1)? € A}, as well as a conjugation-invariant open neighborhood
Al CAY of 1p, and set A, = A7 N(AY,,)"". By replacing each
A with A}, we can assume that A, C I'y is a conjugation-invariant
symmetric open neighborhood of 1r such that A7, ; € A, forall k € N.

Theorem [2| ensures that, after replacing (Ay)ren with a subsequence
if necessary, it is sufficient to show that if there is a continuous ho-
momorphism ¢: 2% — X from (Go)ren to (RX, \ RX,,,)ken, then
condition (2) holds.
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Fix an enumeration (d;) ey of a countable dense subset of I', and for
all j € Nand n > 0, define R}, = (¢ x gb)*l(joAn). As Proposition
ensures that I' = UjeN 0;A, for all n € N, it follows that UkeN Gox C
U ien 12, for all n € N, so Proposition yields functions g,: 2<" —
N and a continuous homomorphism ¢’: 2% — 28 from (Gg)ren to
(Gox)ken that is also a homomorphism from (Gsnf\t|71,t)n>0,te2<" to
(R}, (#)n)n>04e2<n. By replacing ¢ with ¢o¢)’ and defining v, (t) = d,, )
foralln > 0 and t € 2", we can assume that ¢ is also a homomorphism
from (Gsn_|t|_1,t)n>0,t€2<" to (Rii(t)An)”>0¢€2<"‘ For each set A C T,
we use (A) to denote the group generated by A.

Lemma 4.2. The function ¢ is a homomorphism from (Gg)sco<n to
(Eék|s|>>562<l\l .

Proof. A graph on a set V' is a symmetric digraph G on V. A G-path
between points u and v is a sequence (w;);<;, where £ € N, such that
u = wy, wj G wjyy for all 7 < ¢, and wy, = v. A graph G on a set
V' is connected if there is a G-path between any two points of V. For
all n € N, let T}, be the graph on 2" consisting of all pairs of the form
(Sp—jt)—1 ~ (1) ~ t, Sn—jj—1 ~ (1 —4) ~ t), where i < 2 and ¢ € 2.

Sublemma 4.3. Suppose that n € N. Then T,, is connected.

Proof. As the case n = 0 is trivial, it is sufficient to show that if n € N
and T,, is connected, then so too is T,,;. Towards this end, suppose
that ug,u; € 2", and note that if i < 2 and (¢;);<¢ is a T,,-path from
ug to uy, then (¢; ~ (i));j<¢ is a T,41-path from uy ~ (2) to uy ~ (7).
Similarly, if (¢ ;);<e, and (t1 )<, are T,,-paths from ug to s, and from
Sn to Uy, respectively, then (tO,j e <O>)j§fo ~ (tLj [ (1))j§£1 is a Tn+1—
path from ug ~ (0) to uy ~ (1).

Given n € N and s € 2", fix a T,-path (¢;);<¢ from s to s,, and
for all j < ¢, fix i; < 2 and u; € 25" with the property that ¢; =
Sn—jusl-1 ~ (i) ~ uj and tj11 = Sp_ju,-1 ~ (1 —7;) ~ uj. Note that
if ce2¥ i <2 and j </, then t; ~ (i) ~ c and t; 11 ~ (i) ~ ¢
are G, _ -related, so ¢(t; ~ (i) ~ ¢) and @(tj41 ~ (i) ~ ¢) are
Ri‘; () a,-related, and since k,, < n, thus A, < Ay, , there is an element
of (n(we—1)Dr, - Y (u0) Ak,) ™ A, (Y (ue—1) A, - - - Yn(u0) Ay, ) send-
ing ¢(s ~ (0) ~ ¢) to ¢(s ~ (1) ~ ¢). As the conjugation invariance
and symmetry of Ay ensure that this product is Aiffl, it follows that
¢(s ~ (0) ~c) By, y ¢(s ~ (1) ~c). 5

Set £, = [{m < n | ky, = k,}| for all n € N. Define ¢: 28N — 9N
by ¥ (c)(n) = c(kn, £,) for all ¢ € 22N and n € N.

|uj|711uj
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Lemma 4.4. The function ¢ o is a homomorphism from ((=ov)" X

E(TN X (:2N)N)keN to (E()gw)kel\l-

Proof. By the obvious inductive argument, it is sufficient to establish
that if sequences ¢, d € 2"N differ at a single coordinate (i,5) € Nx N,
then (¢ o ¥)(c) Efy,, (¢ o¢)(d). Towards this end, fix n € N for
which (i,7) = (kn, 0,), set s = ¢¥(c) | n = 1¥(d) | n, and observe that
¥(c) G ¥(d) or ¥(d) Gy ¥(c), in which case Lemma [4.2] ensures that
(pov)(c) B, y (0 0)(d), thus (¢ o)(c) B, (¢ ) (d). 5

Set D = ((¢otp) x (porp)) H(=x) and E = ((pot)) x (¢por)))  (EX).

Lemma 4.5. Suppose that i € N and F € [i x N|<¥. Then E is
meager in D; p.

Proof. Suppose, towards a contradiction, that £ is not meager in ID; p.
Then another application of Proposition yields j € N for which the
relation Ry = (90 4)) x (¢ 09)) " (R5 »,,,) is not meager in D;
so there exist G € [(i x N)\ F]<® and H, H' € [(~i) x N]<* for which
there are sequences r € 2F, s € 26t € 27 and ¢ € 27 with the
property that R; o ; is comeager in D; m N (Musur X Nyusur), in which
case the set S of (¢, (d,d')) € 20XMNEFUG) 5 (QUOXNINI 5 o((M) <NV
for which ((cUrUs)U(dUt)) Riya; ((cUTUs)U(d'Ut')) is comeager.

Let C be the set of ¢ € 20NV for which S, is comeager, and
let D be the set of (c,d) € 20XN\FVG) 5 o(VXNNH for which (S,)q is
comeager. The Kuratowski-Ulam theorem ensures that C' is comeager,
asis D, for all c € C.

Set Riy1 = ((¢ o) x (¢ o)) '(RX,,,), and let T be the set of
(c,(d,e)) € 20XNNEFVG) 5 (QUD)XNNH 5 o((V)XNNH) with the property
that ((cUrUs)U (dUt)) Ry ((cUrUs)U(eUt)).

Sublemma 4.6. Suppose that ¢ € C'. Then D. x D, C T,.

Proof. Suppose that d,e € D.. Then there exists d' € (S.)q N (Se)e,
so (o) ((cUTUs)U (dUt)) € §;Ai12(po)((cUrUs)U(fUt))
for all f € {d,e}, in which case (¢ o ¥)((cUr Us)U (eUt)) is in
(6;Ai42) 7 10;Aia(@ o) ((cUr Us) U (dUt)), which is itself contained
in Ajri(¢oy)((cUrUs)U(dUt)), thus d T e.

Set M = {m € N | (kpn,ln) € FUGU H}, and define u € 2 by
u(m) = (rUsUt)(km,ly) for all m € M. Then there exists n € N
for which k, = ¢ and v C s,. Define N = {(k;,¢;) | 7 < n} and
uy, € 2N by uy(kj, ¢;) = s,(j) for all j < n, and fix ¢ € C for which
t, [ (i x N)NN) E cUrUs. Let ¢, : 20OXINH sy o((V)xNNH he the
homeomorphism flipping coordinate (k,,¢,), and fix d € D, N ¢, *(D,)



20 B.D. MILLER

for which u, | (((~i) x N)N N) C dUt. Then Sublemma [4.6| ensures
that ((cUrUs)U(dUt)) Rix1 ((cUrUs)U (¢,(d)Ut)), contradicting
the fact that ¢ is a homomorphism from Gg; to ~R§M. X

By composing ¢ o) with the function obtained from applying Propo-
sition [3.6] to D and E, we obtain the desired homomorphism. b

When I' is non-archimedean, we obtain the following:

Proof of Theorem[3 To see that conditions (1) and (2) are mutually
exclusive, note that if I' ~ X is o-lacunary, then the Lusin-Novikov
uniformization theorem and Proposition ensure that F7 is essen-
tially countable, so Proposition |3.8 and the remarks preceding it imply
that there is no continuous embedding of Ef into EX.

It remains to show that at least one of the two conditions holds.
By [BK96, Theorem 7.1.2], the orbit equivalence relation induced by
every open subgroup of I' is Borel. The fact that I' is non-archimedean
therefore implies that the orbit relation induced by every open subset
of I' is Borel. Note that condition (2) is equivalent to the apparently
weaker statement in which ¢ is merely Borel, since we can always pass
to a dense G set C' C 28N on which ¢ is continuous, and then compose
¢ | C with the function given by Proposition . By [BK96, Theorem
5.2.1], we can therefore assume that I' ~ X is continuous. Fix a
decreasing neighborhood basis (Ag)ken of 1 of open subgroups of T
By replacing each A, with I'y N A, we can assume that Ay C I';, for
all £ e N.

By Theorem it is sufficient to show that if ¢: 2N — X is a con-
tinuous homomorphism from ((=u)* X E§Y x (=91)")ren to (EX )ken,
then it is a homomorphism from ((=u)" X Ef )ren to (EX )ren. To-
wards this end, suppose that k € N and ¢,d € 28N are ((=v)* x EL)-
equivalent, and for all n > k, let d,, be the element of 2¥*N that agrees
with d on n x N, and with ¢ off of it. Then d,, — d, so ¢(d,,) — ¢(d).
For all n > k, fix 9, € A, such that §, - ¢(d,) = &(dy+1). Then
Op -0k - P(c) = P(dpyr) for all n > k, so 6,0k - d(c) — o(d).
As 6,0, € A, for all natural numbers n > m > k, it follows
that (0, - - - 0k )n>k is Cauchy with respect to every compatible complete
right-invariant metric on I', and therefore converges to some § € A,
(since open subgroups of topological groups are necessarily closed).
Then 8, - - - 0p-d(c) = 0-p(c), s0 6-¢(c) = ¢(d), thus ¢(c) EX, ¢(d). ®
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