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Abstract. We generalize the G0 dichotomy to doubly-indexed
sequences of analytic digraphs. Under a mild definability assump-
tion, we use this generalization to characterize the family of Borel
actions of tsi Polish groups on Polish spaces that can be decom-
posed into countably-many Borel actions admitting complete Borel
sets that are lacunary with respect to an open neighborhood of
the identity. We also show that if the group in question is non-
archimedean, then the inexistence of such a decomposition yields a
special kind of continuous embedding of EN

0 into the corresponding
orbit equivalence relation.

Introduction

A digraph on a set X is an irreflexive set G ⊆ X×X. The restriction
of such a digraph to a set Y ⊆ X is given by G � Y = G ∩ (Y × Y ).
A set Y ⊆ X is G-independent if G � Y = ∅. A Z-coloring of G is a
function π : X → Z such that π−1({z}) is G-independent for all z ∈ Z.

A homomorphism from a binary relation R on X to a binary relation
S on Y is a function φ : X → Y such that w R x =⇒ φ(w) S φ(x)
for all w, x ∈ X. A homomorphism from a sequence (Ri)i∈I of binary
relations on X to a sequence (Si)i∈I of binary relations on Y is a func-
tion φ : X → Y that is a homomorphism from Ri to Si for all i ∈ I.

For all sets N , let XN denote the set of functions s : N → X, and
defineX<N =

⋃
n∈NX

n andX≤N = X<N∪XN. GivenM ⊆ N , s ∈ XM ,
and t ∈ XN , we write s v t to indicate that s = t �M . For all x ∈ X,
let (x) denote the element of X1 sending 0 to x. Let s a t denote the
concatenation of sequences s ∈ X<N and t ∈ X≤N.

Fix kn ∈ N such that k0 = 0, ∀n ∈ N kn+1 ≤ max{km | m ≤ n}+ 1,
and ∀k ∈ N∃∞n ∈ N k = kn, as well as sequences sn ∈ 2n such that
∀k ∈ N∀s ∈ 2<N∃n ∈ N (k = kn and s v sn). For all s ∈ 2<N, let Gs

denote the digraph on 2N given by Gs = {(s a (i) a c)i<2 | c ∈ 2N}.
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For all k ∈ N, let G0,k denote the digraph on 2N given by G0,k =⋃
{Gsn | n ∈ N and k = kn}.
Endow N with the discrete topology, and NN with the corresponding

product topology. A topological space is analytic if it is a continuous
image of a closed subset of NN, and Polish if it is separable and admits a
compatible complete metric. A subset of a topological space is Borel if
it is in the smallest σ-algebra containing the open sets, and co-analytic
if its complement is analytic. Every Polish space is analytic (see, for
example, [Kec95, Theorem 7.9]), and Souslin’s theorem ensures that
a subset of an analytic Hausdorff space is Borel if and only if it is
analytic and co-analytic (see, for example, the proof of [Kec95, 14.11]).
A function between topological spaces is Borel if preimages of open
sets are Borel.

A sequence (Xi,j)i,j∈N of sets is increasing in j if Xi,j ⊆ Xi,j+1 for
all i, j ∈ N. A digraph G on a topological space X has countable Borel
chromatic number, or χB(G) ≤ ℵ0, if there is a Borel N-coloring of G.
Our first result generalizes Kechris–Solecki–Todorcevic’s characteriza-
tion of the existence of such colorings (see [KST99, Theorem 6.3]):

Theorem 1. Suppose that X is a Hausdorff space and (Gi,j)i,j∈N is an
increasing-in-j sequence of analytic digraphs on X. Then exactly one
of the following holds:

(1) There are Borel sets Bi ⊆ X with the property that X =
⋃
i∈NBi

and ∀i, j ∈ N χB(Gi,j � Bi) ≤ ℵ0.
(2) There exist a function f : N → N and a continuous homomor-

phism φ : 2N → X from (G0,k)k∈N to (Gk,f(k))k∈N.

We use 1Γ to denote the identity element of a group Γ. The orbit
equivalence relation induced by a group action Γ y X is the equiva-
lence relation on X given by x EX

Γ y ⇐⇒ ∃γ ∈ Γ γ · x = y. More
generally, the orbit relation associated with a set ∆ ⊆ Γ is the binary
relation on X given by x RX

∆ y ⇐⇒ ∃δ ∈ ∆ δ · x = y. A set Y ⊆ X
is ∆-lacunary if y RX

∆ z =⇒ y = z for all y, z ∈ Y , and EX
Γ -complete

if X = ΓY .
We say that a Borel action Γ y X of an analytic Hausdorff group

on an analytic Hausdorff space is (Borel) σ-lacunary if there exist a
sequence (∆n)n∈N of open neighborhoods of 1Γ and a cover (Xn)n∈N of
X by EX

Γ -invariant Borel sets with the property that there is a ∆n-
lacunary EXn

Γ -complete Borel set Bn ⊆ Xn for all n ∈ N.
A topological group is tsi if it has a compatible two-sided-invariant

metric. Klee has shown that a Hausdorff group Γ is tsi if and only if
there is a neighborhood basis of 1Γ consisting of conjugation-invariant
open sets (see [Kle52, 1.5]). A topological group is cli if it has a
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compatible complete left-invariant metric, or equivalently, a compatible
complete right-invariant metric (see, for example, [Bec98, Proposition
3.A.2]). It is well known that every tsi group is cli (see, for example,
[BK96, Corollary 1.2.2]). Our second result characterizes the class of
σ-lacunary Borel actions of tsi Polish groups on Polish spaces:

Theorem 2. Suppose that Γ is a cli Polish group, (∆k)k∈N is a neigh-
borhood basis of 1Γ, X is a Polish space, and Γ y X is a Borel action
with the property that RX

∆ is Borel for all open sets ∆ ⊆ Γ. Then at
least one of the following holds:

(1) The action Γ y X is σ-lacunary.
(2) There exist a subsequence (∆′k)k∈N of (∆k)k∈N and a continuous

homomorphism φ : 2N → X from (G0,k)k∈N to (RX
∆′k
\RX

∆′k+1
)k∈N.

Moreover, if (∆k)k∈N is a decreasing sequence of conjugation-invariant
sets, then exactly one of these conditions holds.

Following the usual abuse of language, we say that an equivalence
relation E on X is countable if |[x]E| ≤ ℵ0 for all x ∈ X. We use =X

and 6=X to denote the equality and inequality relations on X, as well as
E0 to denote the equivalence relation on 2N given by c E0 d ⇐⇒ ∃n ∈
N∀m ≥ n c(m) = d(m). The product of equivalence relations En on
Xn, for n ∈ N , is the equivalence relation

∏
n∈N En on

∏
n∈N Xn given

by (xn)n∈N (
∏

n∈N En) (yn)n∈N ⇐⇒ ∀n ∈ N xn En yn. When N = 2,
we use E0×E1 to denote the product. In the further special case that
there exist n ∈ N and a set X for which X0 = Xn and X1 = XN, we will
abuse notation by identifying E0×E1 with the equivalence relation on
XN obtained via the obvious identification of Xn ×XN with XN. The
N-fold power of an equivalence relation E is given by EN =

∏
n∈N E.

A reduction of a binary relation R to a binary relation S is a homo-
morphism from (R,∼R) to (S,∼S). An embedding of R into S is an
injective reduction of R to S.

Given a Borel action Γ y X of a Polish group on a Polish space for
which EX

Γ is Borel, we say that EX
Γ is essentially countable if it is Borel

reducible to a countable Borel equivalence relation on a Polish space.
It is easy to see that if Γ y X is σ-lacunary, then EX

Γ is essentially
countable (see Proposition 2.7). It is well known that EN

0 —which is
clearly the orbit equivalence relation induced by a continuous action
of the abelian Polish group ((Z/2Z)<N)N—is not essentially countable
(see the remarks preceding Proposition 3.8).

A topological group Γ is non-archimedean if there is a neighbor-
hood basis of 1Γ consisting of open subgroups. It follows that a Haus-
dorff group Γ is both non-archimedean and tsi if and only if there is
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a neighborhood basis of 1Γ consisting of normal open subgroups (see,
for example, [GX14, §2]). Our third result strengthens Hjorth–Kech-
ris’s theorem that if Γ is a non-archimedean tsi Polish group, X is a
Polish space, Γ y X is Borel, and EX

Γ is Borel, then either EX
Γ is es-

sentially countable or there is a continuous embedding of EN
0 into EX

Γ

(see [HK01, Theorem 8.1]):

Theorem 3. Suppose that Γ is a non-archimedean tsi Polish group,
(Γk)k∈N is a sequence of open subgroups of Γ, X is a Polish space,
Γ y X is Borel, and EX

Γ is Borel. Then exactly one of the following
holds:

(1) The action Γ y X is σ-lacunary.
(2) There is a continuous embedding φ : 2N×N → X of EN

0 into EX
Γ

that is a homomorphism from ((=2N)k × EN
0 )k∈N to (EX

Γk
)k∈N.

In §1, we establish Theorem 1. In §2, we consider the connection be-
tween σ-lacunarity and condition (1) of Theorem 1. In §3, we describe
ways of refining condition (2) of Theorem 1. And in §4, we establish
Theorems 2 and 3.

1. A generalization of the G0 dichotomy

A set Z separates a set X from a set Y if X ⊆ Z and Y ∩ Z = ∅.
Given sets X ′ ⊆ X, Y ′ ⊆ Y , and R ⊆ X × Y , we say that (X ′, Y ′) is
R-independent if R ∩ (X ′ × Y ′) = ∅.

Proposition 1.1. Suppose that X and Y are Hausdorff spaces, AX ⊆
X, AY ⊆ Y , and R ⊆ X × Y are analytic, and (AX , AY ) is R-
independent. Then there are Borel sets BX ⊆ X and BY ⊆ Y for
which AX ⊆ BX , AY ⊆ BY , and (BX , BY ) is R-independent.

Proof. As the R-independence of (AX , AY ) ensures that AX is disjoint
from projX((X × AY ) ∩ R), and the latter set can be expressed as
projX((projX(R)×AY )∩R)—and is therefore analytic (see, for exam-
ple, the proof of [Kec95, Proposition 14.4])—Lusin’s separation the-
orem (see, for example, the proof of [Kec95, Theorem 14.7]) yields a
Borel set BX ⊆ X separating AX from projX((X × AY ) ∩ R). Then
(BX , AY ) is R-independent, so AY is disjoint from projY ((BX×Y )∩R),
and since the latter set is analytic, another application of Lusin’s
separation theorem yields a Borel set BY ⊆ Y separating AY from
projY ((BX × Y ) ∩R), in which case (BX , BY ) is R-independent.

Proposition 1.2. Suppose that X is a Hausdorff space, G is an ana-
lytic digraph on X, and A ⊆ X is a G-independent analytic set. Then
there is a G-independent Borel set B ⊆ X for which A ⊆ B.
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Proof. By Proposition 1.1, there are Borel sets Bi ⊆ X such that A ⊆
Bi for all i < 2 and (Bi)i<2 is G-independent. Set B =

⋂
i<2Bi.

Given sets M ⊆ N and a sequence s ∈ 2M , let Ns denote the set of
sequences c ∈ 2N for which s v c.

Proof of Theorem 1. To see that conditions (1) and (2) are mutually
exclusive, suppose that both hold, and fix i ∈ N for which φ−1(Bi) is
non-meager, as well as a Borel coloring π : Bi → N of Gi,f(i) � Bi. Then
there exists m ∈ N for which the set C = (π◦φ)−1({m}) is non-meager.
Fix s ∈ 2<N such that C is comeager in Ns (see, for example, [Kec95,
Proposition 8.26]), as well as n ∈ N for which i = kn and s v sn.
Define ι : Nsna(0) → Nsna(1) by ι(sn a (0) a c) = sn a (1) a c, for all
c ∈ 2N. As ι is a homeomorphism, the set C ∩ ι−1(C) is comeager in
Nsna(0) (see, for example, [Kec95, Exercise 8.45]). But if c ∈ C∩ι−1(C),
then φ(c) (Gi,f(i) � Bi) (φ ◦ ι)(c) and (π ◦ φ)(c) = (π ◦ φ ◦ ι)(c) = m,
contradicting the fact that π is a coloring of Gi,f(i) � Bi.

It remains to show that at least one of conditions (1) and (2) holds.
We can assume that, for all i ∈ N, there exists j ∈ N with the property
that Gi,j 6= ∅, since otherwise condition (1) holds trivially. By removing
a finite initial segment of (Gi,j)j∈N for all i ∈ N, we can therefore
assume that Gi,j 6= ∅ for all i, j ∈ N, in which case there are continuous
surjections ψi,j : NN → Gi,j, for all i, j ∈ N. Letting projk denote

projection onto the kth coordinate, it similarly follows that there is a
continuous surjection φX : NN →

⋃
i,j∈N,k<2 projk(Gi,j).

We will recursively define decreasing sequences (Xα
i,j)α<ω1 of Borel

subsets of X such that Xα
i,j ⊆ Xα

i,j+1 and χB(Gi,j � ∼Xα
i,j) ≤ ℵ0 for all

α < ω1 and i, j ∈ N, so χB(Gi,j � ∼
⋃
k∈NX

α
i,k) ≤ ℵ0 for all i, j ∈ N,

thus condition (1) holds if and only if it holds on
⋂
i∈N

⋃
j∈NX

α
i,j. We

begin by setting X0
i,j = X for all i, j ∈ N. We define Xλ

i,j =
⋂
α<λX

α
i,j

for all i, j ∈ N and limit ordinals λ < ω1. To describe the construction
of Xα+1

i,j from Xα
i,j, we require several preliminaries.

We say that a quadruple a = (na, fa, φa, (ψan)n<na) is an approxi-
mation if na ∈ N, fa : {kn | n < na} → N, φa : 2n

a → Nna , and
ψan : 2n

a−1−n → Nna for all n < na. We say that an approximation b is
a one-step extension of an approximation a if:

• na = nb − 1.
• fa = f b � {kn | n < na}.
• ∀i < 2∀s ∈ 2n

a
φa(s) v φb(s a (i)).

• ∀i < 2∀n < na∀s ∈ 2n
a−n−1 ψan(s) v ψbn(s a (i)).

We say that a quadruple γ = (nγ, fγ, φγ, (ψγn)n<nγ ) is a configuration if
nγ ∈ N, fγ : {kn | n < nγ} → N, φγ : 2n

γ → NN, ψγn : 2n
γ−1−n → NN for
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all n < nγ, and (ψkn,fγ(kn) ◦ψγn)(s) = ((φX ◦φγ)(sn a (i) a s))i<2 for all
n < nγ and s ∈ 2n

γ−n−1. We say that a configuration γ is compatible
with an approximation a if:

• na = nγ.
• fa = fγ.
• ∀s ∈ 2n

a
φa(s) v φγ(s).

• ∀n < na∀s ∈ 2n
a−n−1 ψan(s) v ψγn(s).

We say that a configuration γ is compatible with a sequence (Xi,j)i,j∈N of
subsets of X if there is an extension f : N→ N of fγ with the property
that (φX ◦ φγ)(2n

γ
) ⊆

⋂
i∈NXi,f(i). We say that an approximation a is

(Xi,j)i,j∈N-terminal if no configuration is compatible with both a one-
step extension of a and (Xi,j)i,j∈N. Let A(a, (Xi,j)i,j∈N) denote the set
of points of the form (φX ◦φγ)(sna), where γ varies over configurations
compatible with both a and (Xi,j)i,j∈N. Note that if (Xi,j)i,j∈N is a
sequence of Borel sets, then A(a, (Xi,j)i,j∈N) is a continuous image of a
Borel subset of NN, and is therefore analytic.

Lemma 1.3. Suppose that (Xi,j)i,j∈N is a sequence of subsets of X and
a is an approximation for which kna ∈ dom(fa) and A(a, (Xi,j)i,j∈N) is
not Gkna ,fa(kna )-independent. Then a is not (Xi,j)i,j∈N-terminal.

Proof. Fix configurations γ0 and γ1, compatible with a and (Xi,j)i,j∈N,
for which ((φX ◦ φγi)(sna))i<2 ∈ Gkna ,fa(kna ). Then there exists b ∈ NN

such that ψkna ,fa(kna )(b) = ((φX ◦ φγi)(sna))i<2. Let γ be the config-
uration given by nγ = na + 1, fγ = fa, φγ(s a (i)) = φγi(s) for
all i < 2 and s ∈ 2n

a
, ψγn(s a (i)) = ψγin (s) for all i < 2, n < na,

and s ∈ 2n
a−n−1, and ψγna(∅) = b. Then the unique approximation

with which γ is compatible is a one-step extension of a, so a is not
(Xi,j)i,j∈N-terminal.

Lemma 1.4. Suppose that (Xi,j)i,j∈N is a sequence of subsets of X, a
is an approximation for which kna /∈ dom(fa), and there exists ` ∈ N
such that A(a, (Xi,j)i,j∈N) is not Gkna ,`-independent. Then a is not
(Xi,j)i,j∈N-terminal.

Proof. Fix configurations γ0 and γ1, compatible with a and (Xi,j)i,j∈N,
for which ((φX ◦φγi)(sna))i<2 ∈ Gkna ,`. By increasing ` if necessary, we
can assume that (φX ◦φγ0)(2n

a
)∪ (φX ◦φγ1)(2n

a
) ⊆ Xkna ,`. Fix b ∈ NN

such that ψkna ,`(b) = ((φX ◦φγi)(sna))i<2, and let γ be the configuration
given by nγ = na + 1, fγ(k) = fa(k) for all k < kna , f

γ(kna) = `,
φγ(s a (i)) = φγi(s) for all i < 2 and s ∈ 2n

a
, ψγn(s a (i)) = ψγin (s) for

all i < 2, n < na, and s ∈ 2n
a−n−1, and ψγna(∅) = b. Then the unique

approximation with which γ is compatible is a one-step extension of a,
so a is not (Xi,j)i,j∈N-terminal.
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As Proposition 1.2 ensures that every Gi,j-independent analytic set
is contained in a Gi,j-independent Borel set, Lemmas 1.3 and 1.4 imply
that if (Xi,j)i,j∈N is a sequence of Borel sets and a is an (Xi.j)i,j∈N-
terminal approximation, then there is a Borel set B(a, (Xi,j)i,j∈N) ⊇
A(a, (Xi,j)i,j∈N) that is Gkna ,fa(kna )-independent if kna ∈ dom(fa), and
Gkna ,`-independent for all ` ∈ N if kna /∈ dom(fa).

We finally define Xα+1
k,` to be the difference of Xα

k,` and the union of
the sets of the form B(a, (Xα

i,j)i,j∈N), where a is an (Xα
i,j)i,j∈N-terminal

approximation, kna = k, and fa(kna) ≥ ` if kna ∈ dom(fa).

Lemma 1.5. Suppose that α < ω1 and a is an approximation that is
not (Xα+1

i,j )i,j∈N-terminal. Then there is a one-step extension of a that
is not (Xα

i,j)i,j∈N-terminal.

Proof. Fix a one-step extension b of a for which there is a configuration
γ compatible with b and (Xα+1

i,j )i,j∈N. Note that if knb ∈ dom(f b), then

(φX ◦ φγ)(snb) ∈ Xα+1
k
nb
,fb(k

nb
)
, so A(b, (Xα

i,j)i,j∈N) ∩Xα+1
k
nb
,fb(k

nb
)
6= ∅, thus

b is not (Xα
i,j)i,j∈N-terminal. And if knb /∈ dom(f b), then there exists

` ∈ N for which (φX ◦φγ)(snb) ∈ Xα+1
k
nb
,`, so A(b, (Xα

i,j)i,j∈N)∩Xα+1
k
nb
,` 6= ∅,

thus b is not (Xα
i,j)i,j∈N-terminal.

Fix α < ω1 for which the families of (Xα
i,j)i,j∈N- and (Xα+1

i,j )i,j∈N-
terminal approximations are one and the same, and let a0 be the unique
approximation such that na0 = 0. Then A(a0, (Xi,j)i,j∈N) = φX(NN) ∩⋂
i∈N

⋃
j∈NXi,j for all sequences (Xi,j)i,j∈N of subsets of X, so if a0 is

(Xα
i,j)i,j∈N-terminal, then Xα+1

0,` ⊆ Xα
0,` \ (φX(NN) ∩

⋂
i∈N

⋃
j∈NX

α
i,j) for

all ` ∈ N, so
⋂
i∈N

⋃
j∈NX

α+1
i,j ⊆ (

⋃
`∈NX

α
0,`\(φX(NN)∩

⋂
i∈N

⋃
j∈NX

α
i,j))∩⋂

i>0

⋃
j∈NX

α
i,j. As the latter set is disjoint from φX(NN), it follows that

condition (1) holds on
⋂
i∈N

⋃
j∈NX

α+1
i,j , thus condition (1) holds.

Otherwise, by recursively applying Lemma 1.5, we obtain one-step
extensions an+1 of an that are not (Xα

i,j)i,j∈N-terminal, for all n ∈
N. Define f : N → N by f =

⋃
n∈N f

an , define φ : 2N → NN by
φ(c) =

⋃
n∈N φ

an(c � n) for all c ∈ 2N, and define ψn : 2N → NN by
ψn(c) =

⋃
m∈N ψ

an+1+m
n (c � m) for all c ∈ 2N and n ∈ N. To see that

φX ◦φ is a homomorphism from (G0,k)k∈N to (Gk,f(k))k∈N, we will show
that (ψkn,f(kn) ◦ ψn)(c) = ((φX ◦ φ)(sn a (i) a c))i<2 for all c ∈ 2N

and n ∈ N. For this, it is sufficient to show that if U ⊆ X × X is an
open neighborhood of (ψkn,f(kn) ◦ ψn)(c) and V ⊆ X × X is an open
neighborhood of ((φX ◦ φ)(sn a (i) a c))i<2, then U ∩ V 6= ∅. To-
wards this end, fix m ∈ N for which ψkn,f(kn)(Nψan+1+m

n (s)) ⊆ U and∏
i<2 φX(Nφan+1+m (sna(i)as)) ⊆ V , where s = c � m. As an+1+m is not
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(Xα
i,j)i,j∈N-terminal, there is a configuration γ compatible with an+1+m.

Then (ψkn,f(kn) ◦ψγn)(s) ∈ U and ((φX ◦φγ)(sn a (i) a s))i<2 ∈ V , thus
U ∩ V 6= ∅.

2. Lacunary sets

We provide the proof of the following straightforward observation for
the reader’s convenience:

Proposition 2.1. Suppose that Γ is a topological group, D ⊆ Γ is
dense, and U ⊆ Γ is a non-empty open set. Then Γ = DU = UD.

Proof. Note that if γ ∈ Γ, then γU−1 and U−1γ are non-empty and
open, so D ∩ γU−1 and U−1γ ∩ D are non-empty, and it follows that
γ ∈ (D ∩ γU−1)U ⊆ DU and γ ∈ U(D ∩ U−1γ) ⊆ UD.

We next show that σ-lacunarity yields the corresponding special case
of condition (1) in Theorem 1:

Proposition 2.2. Suppose that Γ is an analytic Hausdorff group, (∆i)i∈N
is a neighborhood basis of 1Γ consisting of conjugation-invariant open
sets, X is an analytic Hausdorff space, and Γ y X is a σ-lacunary Bor-
el action with the property that RX

∆ is Borel for all open sets ∆ ⊆ Γ.
Then there are Borel sets Bi ⊆ X with the property that X =

⋃
i∈NBi

and ∀i, j ∈ N χB((RX
∆i
\RX

∆j
) � Bi) ≤ ℵ0.

Proof. By breaking X into countably-many EX
Γ -invariant Borel sets,

we can assume that there is an open neighborhood ∆ ⊆ Γ of 1Γ for
which there is a ∆-lacunary EX

Γ -complete Borel set B ⊆ X.
Fix i ∈ N for which there is an open neighborhood ∆′ ⊆ Γ of 1Γ

such that (∆′)−1∆i∆
′ ⊆ ∆. To see that ∀j ∈ N χB(RX

∆i
\ RX

∆j
) ≤ ℵ0,

suppose that j ∈ N, and fix a non-empty open set ∆′′ ⊆ ∆′ for which
∆′′(∆′′)−1 ⊆ ∆j.

Lemma 2.3. The set ∆′′B is (RX
∆i
\RX

∆j
)-independent.

Proof. Suppose that x′′, y′′ ∈ ∆′′B are RX
∆i

-related, and fix δ′′x, δ
′′
y ∈ ∆′′

for which the points x = (δ′′x)−1 ·x′′ and y = (δ′′y)−1 ·y′′ are in B. Then x

and y are RX
(∆′′)−1∆i∆′′

-related, so RX
∆-related, thus equal, and it follows

that x′′ and y′′ are RX
∆′′(∆′′)−1-related, thus RX

∆j
-related.

For all γ ∈ Γ, Lemma 2.3 and the conjugation invariance of ∆i and
∆j ensure that γ∆′′B is (RX

∆i
\RX

∆j
)-independent. As γ∆′′B is analytic,

Proposition 1.2 therefore yields an (RX
∆i
\ RX

∆j
)-independent Borel set

Bγ ⊆ X containing γ∆′′B.
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Fix a countable dense set D ⊆ Γ. As Proposition 2.1 ensures that
Γ = D∆′′, it follows that X = ΓB =

⋃
γ∈D γ∆′′B =

⋃
γ∈D Bγ, thus

χB(RX
∆i
\RX

∆j
) ≤ ℵ0.

Given a digraph G on a set X, we say that a set Y ⊆ X is a G-clique
if all pairs of distinct points of Y are in G.

Proposition 2.4. Suppose that Γ is a separable group, X is a set,
Γ y X is an action, and ∆ ⊆ Γ is an open neighborhood of 1Γ. Then
every EX

Γ -class is a countable union of (RX
∆ \=X)-cliques.

Proof. Fix a countable dense set D ⊆ Γ and a non-empty open set
Λ ⊆ Γ for which ΛΛ−1 ⊆ ∆. Observe that if d ∈ D and x ∈ X, then
y, z ∈ Λd · x =⇒ z ∈ Λd(Λd)−1y = ΛΛ−1y ⊆ ∆y, so Λd · x is an
(RX

∆ \=X)-clique, and Γx =
⋃
d∈D Λd · x by Proposition 2.1.

We next show that σ-lacunarity follows from the corresponding spe-
cial case of condition (1) in Theorem 1:

Proposition 2.5. Suppose that Γ is a cli Polish group, X is an analytic
metric space, Γ y X is continuous, (∆i)i∈N is a neighborhood basis of
1Γ, and there are Borel sets Bi ⊆ X with the property that X =

⋃
i∈NBi

and ∀i, j ∈ N χB((RX
∆i
\RX

∆j
) � Bi) ≤ ℵ0. Then Γ y X is σ-lacunary.

Proof. We can assume that Γ is not discrete, since otherwise Γ y X is
trivially σ-lacunary. So, by passing to a subsequence of (∆i)i∈N, we can
assume that (∆i+1)−1 ∪ (∆i+1)2 ⊆ ∆i for all i ∈ N. By breaking each
Bi into countably-many Borel sets, we obtain Borel sets B′n ⊆ X and
in ∈ N with the property that B′n is (RX

∆in
\ RX

∆in+3
)-independent and

χB((RX
∆in
\RX

∆j
) � B′n) ≤ ℵ0 for all j ≥ in+4 and n ∈ N. As a result of

Montgomery-Novikov ensures that the class of Borel sets is closed under
category quantification (see, for example, [Kec95, Theorem 16.1]), it
follows that the function φ : X → N, given by φ(x) = min{n ∈ N |
∃∗γ ∈ Γ γ · x ∈ B′n}, is Borel. By passing to the EX

Γ -invariant Borel
sets of the form φ−1({n}), where n ∈ N, it is sufficient to show that if
i ∈ N and B ⊆ X is an (RX

∆i
\ RX

∆i+3
)-independent Borel set such that

∀j ≥ i + 4 χB((RX
∆i
\ RX

∆j
) � B) ≤ ℵ0 and ∀x ∈ X∃∗γ ∈ Γ γ · x ∈ B,

then there is a ∆i+2-lacunary EX
Γ -complete Borel set.

Lemma 2.6. The restriction E = RX
∆i
� B is an equivalence relation.

Proof. To see that E is symmetric, observe that if x E y, then the
(RX

∆i
\RX

∆i+3
)-independence of B ensures that x RX

∆i+3
y, so y RX

∆i+2
x,

thus y E x. To see that E is transitive, note that if x E y E z, then
the (RX

∆i
\ RX

∆i+3
)-independence of B ensures that x RX

∆i+3
y RX

∆i+3
z,

so x RX
∆i+2

z, thus x E z.
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Proposition 2.4 ensures that E has countable index below EX
Γ � B, so

the set B′ = {x ∈ B | ∃∗γ ∈ Γ x E γ ·x} is EX
Γ -complete. By replacing

B with B′, we can therefore assume that ∀x ∈ B∃∗γ ∈ Γ x E γ · x.
Fix positive real numbers εj → 0 and Borel colorings cj : B → N of

(RX
∆i
\ RX

∆j
) � B such that diam c−1

j ({n}) ≤ εj for all j ≥ i + 4 and

n ∈ N. For all j ≥ i + 3 and x ∈ B, let sj(x) be the lexicographically
minimal sequence s ∈ Nj−i−3 for which there are non-meagerly many
γ ∈ Γ such that γ · x ∈ [x]E ∩

⋂
i+4≤k≤j c

−1
k ({s(k − i− 4)}), and define

Cj = {x ∈ B | sj(x) = (ck(x))i+4≤k≤j}.
A ray from a point x ∈ B through (Cj)j≥i+3 is a sequence (δj)j≥i+3

such that δj ∈ ∆j and δj · · · δi+3 ·x ∈ Cj+1 for all j ≥ i+ 3. To see that
such rays exist, set xi+3 = x, and fix xj ∈ Cj ∩ [x]E for all j ≥ i + 4.
As the (RX

∆i
\ RX

∆j
)-independence of Cj ensures that E � Cj ⊆ RX

∆j
,

there exists δj ∈ ∆j such that δj ·xj = xj+1, for all j ≥ i+ 3. But then
(δj)j≥i+3 is a ray from x through (Cj)j≥i+3.

As ∆2
j ⊆ ∆j−1 for all j ≥ i+3, a straightforward induction shows that

if i+ 3 ≤ j ≤ k, then ∆k · · ·∆j ⊆ ∆j−1. It follows that if (δj)j≥i+3 is a
ray from x through (Cj)j≥i+3, then δk · · · δj ∈ ∆j−1 for all k ≥ j ≥ i+3,
so (δj · · · δi+3)j≥i+3 is Cauchy with respect to every compatible complete
right-invariant metric on Γ, and therefore converges to some δ ∈ ∆i+2.

Observe now that if (δxj )j≥i+3 and (δyj )j≥3 are rays from points x
and y in B through the sequence (Cj)j≥i+3, and δx and δy are the
corresponding limit points, then (δy)−1∆i+2δ

x ⊆ (δy)−1∆i+1 ⊆ ∆i, so
δx · x RX

∆i+2
δy · y =⇒ x RX

∆i
y =⇒ x E y, and the fact that

diamCj → 0 ensures that x E y =⇒ δx ·x = δy · y. Define ψ : B → X
by setting ψ(x) = y if and only if there is a ray (δj)j≥i+3 from x through
(Cj)j≥i+3 for which δj · · · δi+3 ·x→ y. As graph(ψ) is analytic, it is Bor-
el (see, for example, the proof of [Kec95, Theorem 14.12]), so the fact
that ψ(B) = {x ∈ X | ∃∗γ ∈ Γ ψ(γ ·x) = x} ensures that ψ(B) is Borel.
But the above remarks also imply that the latter set is ∆i+2-lacunary,
and it is clearly EX

Γ -complete.

We close this section by noting that σ-lacunarity yields essential
countability. By the Lusin-Novikov uniformization theorem (see, for
example, [Kec95, Theorem 18.10]), it is sufficient to show the following:

Proposition 2.7. Suppose that Γ is a Polish group, X is a Polish
space, and Γ y X is a σ-lacunary Borel action. Then there is an
EX

Γ -complete Borel set B ⊆ X such that EX
Γ � B is countable.

Proof. It is sufficient to show that if ∆ ⊆ Γ is an open neighborhood
of 1Γ and Y ⊆ X is ∆-lacunary, then EX

Γ � Y is countable. But this is
a direct consequence of Proposition 2.4.
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Remark 2.8. Although we shall have no need for it here, it is worth
mentioning that—after seeing a draft of this article and having several
conversations with myself on the topic—Greb́ık established the con-
verse of Proposition 2.7 in the special case that EX

Γ is Borel. While
this can be combined with [HK01, Theorem 8.1] to obtain a version
of Theorem 3, one of the primary motivations underlying this pa-
per was, in fact, to provide a simpler proof of [HK01, Theorem 8.1].
The idea behind Greb́ık’s argument is as follows: Appeal to the Lu-
sin-Novikov uniformization theorem to obtain a Borel uniformization
π : X → B of EX

Γ , note that for all open neighborhoods ∆ ⊆ Γ
of 1Γ, the sets X∆ = {x ∈ X | ∀∗δ ∈ ∆ π(x) = π(δ · x)} and
B∆ = {y ∈ B | ∃∗γ ∈ Γ (γ · y ∈ X∆ and π(γ · y) = y)} are Borel, fix a
Borel uniformization π∆ : B∆ → X∆ of {(y, x) ∈ B∆ ×X∆ | π(x) = y}
(see, for example, [Kec95, Theorem 18.6]), and observe that the set
A∆ = π∆(B∆) is Borel (see, for example, [Kec95, Theorem 15.1]). But
one can easily check that A∆ is Λ-lacunary for every open set Λ ⊆ Γ
such that Λ2 ⊆ ∆, and

⋃
{A∆ | ∆ is an open neighborhood of 1Γ} is

EX
Γ -complete (see [Gre20]).

3. Compositions

Given n ∈ N and a sequence (si)i<n of elements of N<N, let
⊕

i<n si
denote the concatenation s0 a s1 a · · · a sn−1. Given a sequence
(sn)n∈N of elements of N<N, let

⊕
n∈N sn denote

⋃
n∈N

⊕
i<n si.

Proposition 3.1. Suppose that C ⊆ 2N is comeager and f : N → N.
Then there is a continuous homomorphism φ : 2N → C from (G0,k)k∈N
to (G0,f(k))k∈N.

Proof. Fix dense open sets Un ⊆ 2N for which
⋂
n∈N Un ⊆ C.

Lemma 3.2. For all n ∈ N and φ : 2n → 2<N, there exists t ∈ 2<N

such that Nφ(s)at ⊆ Un for all s ∈ 2n.

Proof. Fix an enumeration (sm)m<2n of 2n, and recursively find tm ∈
2<N with Nφ(sm)a

⊕
`≤m t` ⊆ Un for all m < 2n. Set t =

⊕
m<2n tm.

Set `0 = 0 and define φ0 : 20 → 2`0 by φ0(∅) = ∅. Given n ∈ N,
`n ∈ N, and φn : 2n → 2`n , appeal to Lemma 3.2 to obtain a sequence
tn ∈ 2<N such that Nφn(s)atn ⊆ Un for all s ∈ 2n. Then there exists
mn ∈ N for which kmn = f(kn) and φn(sn) a tn v smn , as well as
a unique extension un ∈ 2mn−`n of tn such that smn = φn(sn) a un.
Set `n+1 = mn + 1, and define φn+1 : 2n+1 → 2`n+1 by φn+1(t a (i)) =
φn(t) a un a (i) for all i < 2 and t ∈ 2n.
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Define φ : 2N → 2N by φ(c) =
⋃
n∈N φn(c � n) for all c ∈ 2N. To

see that φ(2N) ⊆ C, note that if c ∈ 2N, then φ(c) ∈ Nφn+1(c�(n+1)) ⊆
Nφn(c�n)atn ⊆ Un for all n ∈ N, thus φ(c) ∈

⋂
n∈N Un ⊆ C. Given

k ∈ N, to see that φ is a homomorphism from G0,k to G0,f(k), observe
that if c ∈ 2N, n ∈ N, k = kn, and d =

⊕
m∈N un+1+m a (c(m)), then

φ(sn a (i) a c) = φn+1(sn a (i)) a d = φn(sn) a un a (i) a d =
smn a (i) a d for all i < 2, so the fact that kmn = f(kn) ensures that
φ(sn a (0) a c) G0,f(kn) φ(sn a (1) a c).

For all n ∈ N, define X<n =
⋃
m<nX

m. For all s, t ∈ 2<N, define
Gs,t = {(s a (i) a t a c)i<2 | c ∈ 2N}.

Proposition 3.3. Suppose that (Rj,n)j∈N,n>0 is a sequence of analytic
binary relations on 2N such that

⋃
m<nG0,km ⊆

⋃
j∈NRj,n for all n > 0.

Then there are functions gn : 2<n → N and a continuous homomor-
phism φ : 2N → 2N from (G0,k)k∈N to (G0,k)k∈N that is also a homomor-
phism from (Gsn−|t|−1,t)n>0,t∈2<n to (Rgn(t),n)n>0,t∈2<n.

Proof. We will recursively construct mn ∈ N and un ∈ 2<N for all
n ∈ N, from which we define φ[m,n) : 2n−m → 2<N by φ[m,n)(t) =⊕

i<n−m ui+m a (t(i)) for all natural numbers m ≤ n and sequences

t ∈ 2n−m, as well as gn : 2<n → N and open sets Uj,n ⊆ 2N for all j ∈ N
and n > 0, satisfying the following conditions:

(1) ∀j ∈ N∀n > 0 Uj,n is dense in Nun .
(2) ∀n > 0∀c ∈

⋂
j∈N Uj,n∀t ∈ 2<n

(φ[0,n)(sn−|t|−1 a (i) a t) a c)i<2 ∈ Rgn(t),n.
(3) ∀n > 0∀t ∈ 2<n Nφ[n−|t|,n)(t)aun ⊆ U|t|,n−|t|.

(4) ∀n ∈ N (kmn = kn and smn = φ[0,n)(sn) a un).

We begin by setting m0 = 0 and u0 = ∅. Suppose now that n > 0
and we have already found (mk)k<n and (uk)k<n, as well as (gk)0<k<n

and (Uj,k)j∈N,0<k<n, satisfying the corresponding fragments of the above
conditions. For all g : 2<n → N, let Bg be the set of c ∈ 2N such that
(φ[0,n)(sn−|t|−1 a (i) a t) a c)i<2 ∈ Rg(t),n for all t ∈ 2<n. Note that if
c ∈ 2N, i < 2, and t ∈ 2<n, then condition (4) ensures that

φ[0,n)(sn−|t|−1 a (i) a t) a c

= φ[0,n−|t|)(sn−|t|−1 a (i)) a φ[n−|t|,n)(t) a c

= φ[0,n−|t|−1)(sn−|t|−1) a un−|t|−1 a (i) a φ[n−|t|,n)(t) a c

= smn−|t|−1
a (i) a φ[n−|t|,n)(t) a c,

so (φ[0,n)(sn−|t|−1 a (i) a t) a c)i<2 ∈ G0,kn−|t|−1
⊆

⋃
j∈NRj,n, thus

there exists g : 2<n → N for which c ∈ Bg. Fix gn : 2<n → N for which
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Bgn is non-meager, u0,n ∈ 2<N for which Bgn is comeager in Nu0,n , and
dense open sets Uj,n ⊆ Nu0,n such that

⋂
j∈N Uj,n ⊆ Bgn . Note that if

t ∈ 2<n and u ∈ 2<N extends u0,n, then U|t|,n−|t| is dense in Nφ[n−|t|,n)au
(by our choice of U0,n when t = ∅, and by condition (1) and the fact
that un−|t| v φ[n−|t|,n)(t) when t 6= ∅). Fix an enumeration (tk,n)k<2n−1

of 2<n, and recursively find extensions uk+1,n ∈ 2<N of uk,n such that
Nφ[n−|tk,n|,n)(tk,n)auk+1,n

⊆ U|tk,n|,n−|tk,n| for all k < 2n − 1. Fix mn ∈ N
for which kmn = kn and φ[0,n)(sn) a u2n−1,n v smn , and let un be the
unique extension of u2n−1,n for which smn = φ[0,n)(sn) a un.

Define φ[m,∞) : 2N → 2N by φ[m,∞)(c) =
⋃
n∈N φ[m,m+n)(c � n) for all

c ∈ 2N and m ∈ N.
To see that φ[0,∞) is a homomorphism from G0,k to G0,k for all k ∈ N,

note that if c ∈ 2N, n ∈ N, k = kn, and d =
⊕

m∈N un+1+m a (c(m)),
then condition (4) ensures that φ[0,∞)(sn a (i) a c) = φ[0,n+1)(sn a
(i)) a d = φ[0,n)(sn) a un a (i) a d = smn a (i) a d for all i < 2, so
φ[0,∞)(sn a (0) a c) G0,k φ[0,∞)(sn a (1) a c).

Given n > 0 and t ∈ 2<n, to see that φ[0,∞) is a homomorphism from
Gsn−|t|−1,t to Rgn(t),n, note that if c ∈ 2N, then condition (3) ensures that

Nφ[n,m)(c�(m−n))aum ⊆ Um−n,n for all m ≥ n, so φ[n,∞)(c) ∈
⋂
j∈N Uj,n. As

φ[0,∞)(sn−|t|−1 a (i) a t a c) = φ[0,n)(sn−|t|−1 a (i) a t) a φ[n,∞)(c) for
all i < 2, it follows that (φ[0,∞)(sn−|t|−1 a (i) a t a c))i<2 ∈ Rgn(t),n,
by condition (2).

For all sets N , let [N ]<ℵ0 denote the family of finite subsets of N .
For all sequences c, d ∈ 2N , set ∆(c, d) = {n ∈ N | c(n) 6= d(n)}.
Define δi : 2N×N × 2N×N → N ∪ {ℵ0} by δi(c, d) = |∆(c, d) ∩ ({i} × N)|
for all c, d ∈ 2N×N and i ∈ N.

A homomorphism from a function f : X × X → N to a function
g : Y × Y → N is a map φ : X → Y such that f(w, x) = g(φ(w), φ(x))
for all w, x ∈ X. More generally, a homomorphism from a sequence
(fi : X × X → N)i∈I to a sequence (gi : Y × Y → N)i∈I is a map
φ : X → Y that is a homomorphism from fi to gi for all i ∈ I.

Proposition 3.4. Suppose that C ⊆ 2N×N is comeager. Then there is
a continuous homomorphism φ : 2N×N → C from (δi)i∈N to (δi)i∈N.

Proof. Fix dense open sets Un ⊆ 2N×N for which
⋂
n∈N Un ⊆ C.

Lemma 3.5. For all F,G ∈ [N×N]<ℵ0, φ : 2F → 2G, and n ∈ N, there
exist H ∈ [∼G]<ℵ0 and t ∈ 2H such that Nφ(s)∪t ⊆ Un for all s ∈ 2F .

Proof. Fix an enumeration (sm)m<2|F | of 2F , and recursively find pair-
wise disjoint sets Hm ∈ [∼G]<ℵ0 and tm ∈ 2Hm with Nφ(sm)∪

⋃
`≤m t` ⊆ Un

for all m < 2|F |. Define H =
⋃
m<2|F | Hm and t =

⋃
m<2|F | tm.
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Fix an injective enumeration (in, jn)n∈N of N×N, and for all n ∈ N,
set Fn = {(im, jm) | m < n}. Set G0 = ∅, and define φ0 : 2F0 → 2G0

by φ0(∅) = ∅. Given n ∈ N, a set Gn ∈ [N × N]<ℵ0 , and a function
φn : 2Fn → 2Gn , appeal to Lemma 3.5 to obtain Hn ∈ [∼Gn]<ℵ0 and
tn ∈ 2Hn such that Nφn(s)∪tn ⊆ Un for all s ∈ 2Fn , fix kn ∈ N for
which (in, kn) /∈ Gn ∪Hn, set Gn+1 = Gn ∪Hn ∪ {(in, kn)}, and define
φn+1 : 2Fn+1 → 2Gn+1 by φn+1(s) � Gn = φn(s � Fn), φn+1(s) � Hn = tn,
and φn+1(s)(in, kn) = s(in, jn) for all s ∈ 2Fn+1 .

Set G∞ =
⋃
n∈NGn, and let φ : 2N×N → 2N×N be the function given

by supp(φ(c)) ⊆ G∞ and φ(c) � G∞ =
⋃
n∈N φn(c � Fn) for all c ∈

2N×N. To see that φ(2N×N) ⊆ C, note that if c ∈ 2N×N, then φ(c) ∈
Nφn+1(c�Fn+1) ⊆ Nφn(c�Fn)∪tn ⊆ Un for all n ∈ N, thus φ(c) ∈

⋂
n∈N Un ⊆

C. To see that φ is a homomorphism from δi to δi for all i ∈ N, note
that if m < n, then (im, km) 6= (in, kn), since (im, km) ∈ Gm+1 ⊆ Gn

but (in, kn) /∈ Gn, and ∆(φ(c), φ(d)) = {(in, kn) | n ∈ N and (in, jn) ∈
∆(c, d)} for all c, d ∈ 2N×N.

Given F ⊆ N× N and i ∈ N, set ∆i(c, d) = ∆(c, d) ∩ (i× N) for all
c, d ∈ 2F and define Di,F = {(c, d) ∈ 2N×N × 2N×N | ∆i(c, d) = F}. For
all k ∈ N, let (=2N)k×E<N

0 × (=2N)N denote the equivalence relation on
(2N)N with respect to which two sequences c, d ∈ (2N)N are equivalent if
and only if there exists m ≥ k with the property that c(`) 6= d(`) =⇒
(k ≤ ` < m and c(`) E0 d(`)) for all ` ∈ N. We will abuse notation by
identifying each binary relation on (2N)N with the corresponding binary
relation on 2N×N.

Proposition 3.6. Suppose that D ⊆ 2N×N×2N×N is closed and nowhere
dense in Di,F and R ⊆ 2N×N×2N×N is meager in Di,F , for all i ∈ N and
F ∈ [i×N]<ℵ0. Then there is a continuous homomorphism φ : 2N×N →
2N×N from ((=2N)k × E<N

0 × (=2N)N)k∈N to ((=2N)k × E<N
0 × (=2N)N)k∈N

that is also a homomorphism from ( 6=2N×N ,∼EN
0 ) to (∼D,∼R).

Proof. As the function f : 2N×N × 2N×N → 2N×N × 2N×N, given by
f(c, d) = (d, c), is a homeomorphism under which each Di,F is invari-
ant, it follows that each f � Di,F is a homeomorphism, so f(D) is closed
and nowhere dense in each Di,F , thus by replacing D with D ∪ f(D),
we can assume that D is symmetric. For all i ∈ N and F ∈ [i×N]<ℵ0 ,
fix a decreasing sequence (Ui,F,n)n∈N of dense open subsets of Di,F \D
whose intersection is disjoint from R. As each f(Ui,F,n) is a dense open
subset of Di,F \D, by replacing each Ui,F,N with Ui,F,N ∩ f(Ui,F,n), we
can assume that each Ui,F,n is symmetric.

Lemma 3.7. For all F,G ∈ [N × N]<ℵ0, φ : 2F → 2G, and i, n ∈
N, there exist H ∈ [∼G]<ℵ0 and t0, t1 ∈ 2H with the property that
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∆i(t0, t1) = ∅ and Di,∆i(φ(s0),φ(s1)) ∩
∏

k<2Nφ(sk)∪tk ⊆ Ui,∆i(φ(s0),φ(s1)),n

for all s0, s1 ∈ 2F .

Proof. Fix an enumeration (s0,m, s1,m)m<4|F | of 2F ×2F , and recursively
find pairwise disjoint sets Hm ∈ [∼G]<ℵ0 and t0,m, t1,m ∈ 2Hm such that,
for all m < 4|F |, the set ∆i(t0,m, t1,m) is empty and

Di,∆i(φ(s0,m),φ(s1,m)) ∩
∏

k<2Nφ(sk,m)∪
⋃
`≤m tk,` ⊆ Ui,∆i(φ(s0,m),φ(s1,m)),n.

Define H =
⋃
m<4|F | Hm and tk =

⋃
m<4|F | tk,m for all k < 2.

Fix an injective enumeration (in, jn)n∈N of N×N, and for all n ∈ N,
set Fn = {(im, jm) | m < n}. Set G0 = ∅, and define φ0 : 2F0 → 2G0

by φ0(∅) = ∅. Given n ∈ N, a set Gn ∈ [N × N]<ℵ0 , and a function
φn : 2Fn → 2Gn , appeal to Lemma 3.7 to obtain Hn ∈ [∼Gn]<ℵ0 and
t0,n, t1,n ∈ 2Hn such that ∆in(t0,n, t1,n) = ∅ and Din,∆in (φn(s0),φn(s1)) ∩∏

k<2Nφn(sk)∪tk,n ⊆ Uin,∆in (φn(s0),φn(s1)),n for all s0, s1 ∈ 2Fn , set Gn+1 =

Gn∪Hn, and define φn+1 : 2Fn+1 → 2Gn+1 by φn+1(s) � Gn = φn(s � Fn)
and φn+1(s) � Hn = ts(in,jn),n.

Set G∞ =
⋃
n∈NGn, and let φ : 2N×N → 2N×N be the function given

by supp(φ(c)) ⊆ G∞ and φ(c) � G∞ =
⋃
n∈N φn(c � Fn) for all c ∈ 2N×N.

To see that φ is a homomorphism from 6=2N×N to ∼D, note that if
c, d ∈ 2N×N are distinct, then there exists n ∈ N with the property
that c(in, jn) 6= d(in, jn), so (φ(c), φ(d)) ∈ Uin,∆in (φn(c�Fn),φn(d�Fn)),n,
thus (φ(c), φ(d)) /∈ D.

To see that φ is a homomorphism from (=2N)k × E<N
0 × (=2N)N to

(=2N)k × E<N
0 × (=2N)N for all k ∈ N, note that if c, d ∈ 2N×N are

((=2N)k × E<N
0 × (=2N)N)-related, then ∆k(tc(in,jn),n, td(in,jn),n) = ∅ for

all n ∈ N, and c(in, jn) = d(in, jn) for all but finitely many n ∈ N, so
∆(φ(c), φ(d)) is a finite subset of (N \ k)× N.

To see that φ is a homomorphism from ∼EN
0 to ∼R, observe that

if c, d ∈ 2N×N are EN
0 -inequivalent, then there is a least k ∈ N for

which δk(c, d) = ℵ0. Set F = ∆k(c, d), fix n ∈ N sufficiently large
that F ⊆ Fn, define G = ∆k(φn(c � Fn), φn(d � Fn)), and observe that
∆k(φ(c), φ(d)) = G. As there are arbitrarily large m ≥ n for which
im = k and c(im, jm) 6= d(im, jm), and therefore (φ(c), φ(d)) ∈ Uk,G,m,
it follows that (φ(c), φ(d)) /∈ R.

A subset of a topological space is Fσ if it is a countable union of
closed sets, and Gδ if it is a countable intersection of open sets. For all
sets N and sequences c ∈ 2N , let c denote the element of 2N given by
c(n) = 1 − c(n) for all n ∈ N . As the Lusin-Novikov uniformization
theorem and standard change of topology results (see, for example,
[Kec95, §13]) ensure that every countable Borel equivalence relation on
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a Polish space is Borel isomorphic to an Fσ Borel equivalence relation
on a Polish space, the following well-known fact ensures that EN

0 is not
essentially countable:

Proposition 3.8. Suppose that X is a second countable space and E
is an Fσ equivalence relation on X. Then there is no Baire measurable
reduction φ : 2N×N → X of EN

0 to E.

Proof. Suppose that φ : 2N×N → X is a Baire measurable homomor-
phism from ∼EN

0 to ∼E. Then there exist a dense Gδ set C ⊆ 2N×N

for which φ � C is continuous (see, for example, [Kec95, Proposition
8.38]), dense open sets Un ⊆ 2N×N such that C =

⋂
n∈N Un, and open

sets Vn ⊆ X ×X with the property that ∼E =
⋂
n∈N Vn.

Fix an enumeration (in, jn)n∈N of N×N. Set F0 = ∅ and s0 = t0 = ∅.
Given n ∈ N, Fn ∈ [N × N]<ℵ0 , and sn, tn ∈ 2Fn , fix Gn ∈ [∼Fn]<ℵ0

and un ∈ 2Gn such that Nsn∪un ⊆ Un, as well as Hn ∈ [∼(Fn ∪Gn)]<ℵ0

and vn ∈ 2Hn such that Ntn∪un∪vn ⊆ Un. Set F ′n = Fn ∪ Gn ∪ Hn,
s′n = sn ∪ un ∪ vn, and t′n = tn ∪ un ∪ vn, and define ψn : Ns′n → Nt′n by

ψn(c ∪ d ∪ s′n) = c ∪ d ∪ t′n for all c ∈ 2(n×N)\F ′n and d ∈ 2((∼n)×N)\F ′n .
Fix cn ∈ C ∩ ψ−1

n (C) and set dn = ψn(cn). As these points are EN
0 -

inequivalent, it follows that the points xn = φ(cn) and yn = φ(dn) are
E-inequivalent, and therefore Vn-related. Fix Fn+1 ∈ [N × N]<ℵ0 such
that F ′n∪{(in, jn)} ⊆ Fn+1 and φ(C∩Ncn�Fn+1)×φ(C∩Ndn�Fn+1) ⊆ Vn,
and define sn+1 = cn � Fn+1 and tn+1 = dn � Fn+1.

The fact that Nsn+1 ,Ntn+1 ⊆ Un for all n ∈ N ensures that the
sequences c =

⋃
n∈N sn and d =

⋃
n∈N tn are in C, in which case

(φ(c), φ(d)) ∈ φ(C∩Nsn+1)×φ(C∩Ntn+1) ⊆ Vn for all n ∈ N, thus φ(c)
and φ(d) are E-inequivalent. As the fact that ∆n(c, d) = ∆n(sn, tn) for
all n ∈ N ensures that c EN

0 d, it follows that φ is not a homomorphism
from EN

0 to E.

4. A strengthening of the EN
0 dichotomy

We begin this section with the following:

Proof of Theorem 2. To see that conditions (1) and (2) are mutually
exclusive when (∆k)k∈N is a decreasing sequence of conjugation-invari-
ant sets, observe that if Γ y X is σ-lacunary and (∆′k)k∈N is a subse-
quence of (∆k)k∈N, then (∆′k)k∈N is also a neighborhood basis of 1Γ, so
Proposition 2.2 gives rise to Borel sets Bi ⊆ X such that X =

⋃
i∈NBi

and ∀i, j ∈ N χB((RX
∆′i
\ RX

∆′j
) � Bi) ≤ ℵ0, in which case Theorem 1

rules out the existence of a continuous homomorphism from (G0,k)k∈N
to (RX

∆′k
\RX

∆′k+1
)k∈N.
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To see that at least one of the conditions holds, note first that condi-
tion (2) is equivalent to the apparently weaker statement in which φ is
merely Borel, since we can always pass to a dense Gδ set C ⊆ 2N×N on
which φ is continuous (see, for example, [Kec95, Theorem 8.38]), and
then compose φ � C with the function obtained by applying Proposi-
tion 3.1 to C and the identity function. By [BK96, Theorem 5.2.1], we
can therefore assume that Γ y X is continuous. We can also assume
that Γ is not discrete, since otherwise Γ y X is trivially σ-lacunary.
So, by passing to a subsequence, we can assume that (∆k)k∈N is de-
creasing. By Theorem 1 and Proposition 2.5, it is therefore sufficient
to show that if there exist f : N→ N and a continuous homomorphism
φ : 2N → X from (G0,k)k∈N to (RX

∆k
\ RX

∆f(k)
)k∈N, then condition (2)

holds. Towards this end, note that f(k) > k for all k ∈ N, and let
(∆′k)k∈N be the subsequence of (∆k)k∈N given by ∆′k = ∆fk(0) for all
k ∈ N. By one more application of Proposition 3.1, there is a con-
tinuous homomorphism ψ : 2N → 2N from (G0,k)k∈N to (G0,fk(0))k∈N,
in which case φ ◦ ψ is a continuous homomorphism from (G0,k)k∈N to
(RX

∆′k
\RX

∆′k+1
)k∈N.

As a corollary, we obtain an approximation to Theorem 3 that goes
through for all tsi Polish groups:

Theorem 4.1. Suppose that Γ is a tsi Polish group, (Γk)k∈N is a se-
quence of open subgroups of Γ, X is a Polish space, Γ y X is Borel,
and RX

∆ is Borel for all open sets ∆ ⊆ Γ. Then at least one of the
following holds:

(1) The action Γ y X is σ-lacunary.
(2) There is a continuous injective homomorphism φ : 2N×N → X

from ((=2N)k × E<N
0 × (=2N)N)k∈N to (EX

Γk
)k∈N that is also a

homomorphism from ∼EN
0 to ∼EX

Γ .

Proof. Fix a neighborhood basis (∆k)k∈N of 1G and a conjugation-
invariant open neighborhood ∆′′0 ⊆ Γ0 ∩ ∆0 of 1Γ, and set ∆′0 =
∆′′0 ∩ (∆′′0)−1. Given k ∈ N and an open neighborhood ∆′k ⊆ Γk ∩∆k

of 1Γ, fix an open neighborhood ∆′′′k+1 ⊆ Γk+1 ∩ ∆k+1 of 1Γ such that
(∆′′′k+1)2 ⊆ ∆′k, as well as a conjugation-invariant open neighborhood
∆′′k+1 ⊆ ∆′′′k+1 of 1Γ, and set ∆′k+1 = ∆′′k+1∩(∆′′k+1)−1. By replacing each
∆k with ∆′k, we can assume that ∆k ⊆ Γk is a conjugation-invariant
symmetric open neighborhood of 1Γ such that ∆2

k+1 ⊆ ∆k, for all k ∈ N.
Theorem 2 ensures that, after replacing (∆k)k∈N with a subsequence

if necessary, it is sufficient to show that if there is a continuous ho-
momorphism φ : 2N → X from (G0,k)k∈N to (RX

∆k
\ RX

∆k+1
)k∈N, then

condition (2) holds.
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Fix an enumeration (δj)j∈N of a countable dense subset of Γ, and for
all j ∈ N and n > 0, define R′j,n = (φ×φ)−1(RX

δj∆n
). As Proposition 2.1

ensures that Γ =
⋃
j∈N δj∆n for all n ∈ N, it follows that

⋃
k∈N G0,k ⊆⋃

j∈NR
′
j,n for all n ∈ N, so Proposition 3.3 yields functions gn : 2<n →

N and a continuous homomorphism ψ′ : 2N → 2N from (G0,k)k∈N to
(G0,k)k∈N that is also a homomorphism from (Gsn−|t|−1,t)n>0,t∈2<n to

(R′gn(t),n)n>0,t∈2<n . By replacing φ with φ◦ψ′ and defining γn(t) = δgn(t)

for all n > 0 and t ∈ 2<n, we can assume that φ is also a homomorphism
from (Gsn−|t|−1,t)n>0,t∈2<n to (RX

γn(t)∆n
)n>0,t∈2<n . For each set ∆ ⊆ Γ,

we use 〈∆〉 to denote the group generated by ∆.

Lemma 4.2. The function φ is a homomorphism from (Gs)s∈2<N to
(EX
〈∆k|s| 〉

)s∈2<N.

Proof. A graph on a set V is a symmetric digraph G on V . A G-path
between points u and v is a sequence (wj)j≤`, where ` ∈ N, such that
u = w0, wj G wj+1 for all j < `, and w` = v. A graph G on a set
V is connected if there is a G-path between any two points of V . For
all n ∈ N, let Tn be the graph on 2n consisting of all pairs of the form
(sn−|t|−1 a (i) a t, sn−|t|−1 a (1− i) a t), where i < 2 and t ∈ 2<n.

Sublemma 4.3. Suppose that n ∈ N. Then Tn is connected.

Proof. As the case n = 0 is trivial, it is sufficient to show that if n ∈ N
and Tn is connected, then so too is Tn+1. Towards this end, suppose
that u0, u1 ∈ 2n, and note that if i < 2 and (tj)j≤` is a Tn-path from
u0 to u1, then (tj a (i))j≤` is a Tn+1-path from u0 a (i) to u1 a (i).
Similarly, if (t0,j)j≤`0 and (t1,j)j≤`1 are Tn-paths from u0 to sn and from
sn to u1, respectively, then (t0,j a (0))j≤`0 a (t1,j a (1))j≤`1 is a Tn+1-
path from u0 a (0) to u1 a (1).

Given n ∈ N and s ∈ 2n, fix a Tn-path (tj)j≤` from s to sn, and
for all j < `, fix ij < 2 and uj ∈ 2<n with the property that tj =
sn−|uj |−1 a (ij) a uj and tj+1 = sn−|uj |−1 a (1 − ij) a uj. Note that

if c ∈ 2N, i < 2, and j < `, then tj a (i) a c and tj+1 a (i) a c
are Gsn−|uj |−1,uj -related, so φ(tj a (i) a c) and φ(tj+1 a (i) a c) are

RX
γn(uj)∆n

-related, and since kn ≤ n, thus ∆n ≤ ∆kn , there is an element

of (γn(u`−1)∆kn · · · γn(u0)∆kn)−1∆kn(γn(u`−1)∆kn · · · γn(u0)∆kn) send-
ing φ(s a (0) a c) to φ(s a (1) a c). As the conjugation invariance
and symmetry of ∆kn ensure that this product is ∆2`+1

kn
, it follows that

φ(s a (0) a c) EX
〈∆kn 〉

φ(s a (1) a c).

Set `n = |{m < n | km = kn}| for all n ∈ N. Define ψ : 2N×N → 2N

by ψ(c)(n) = c(kn, `n) for all c ∈ 2N×N and n ∈ N.
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Lemma 4.4. The function φ ◦ ψ is a homomorphism from ((=2N)k ×
E<N

0 × (=2N)N)k∈N to (EX
〈∆k〉)k∈N.

Proof. By the obvious inductive argument, it is sufficient to establish
that if sequences c, d ∈ 2N×N differ at a single coordinate (i, j) ∈ N×N,
then (φ ◦ ψ)(c) EX

〈∆i〉 (φ ◦ ψ)(d). Towards this end, fix n ∈ N for

which (i, j) = (kn, `n), set s = ψ(c) � n = ψ(d) � n, and observe that
ψ(c) Gs ψ(d) or ψ(d) Gs ψ(c), in which case Lemma 4.2 ensures that
(φ ◦ ψ)(c) EX

〈∆kn 〉
(φ ◦ ψ)(d), thus (φ ◦ ψ)(c) EX

〈∆i〉 (φ ◦ ψ)(d).

Set D = ((φ◦ψ)×(φ◦ψ))−1(=X) and E = ((φ◦ψ)×(φ◦ψ))−1(EX
Γ ).

Lemma 4.5. Suppose that i ∈ N and F ∈ [i × N]<ℵ0. Then E is
meager in Di,F .

Proof. Suppose, towards a contradiction, that E is not meager in Di,F .
Then another application of Proposition 2.1 yields j ∈ N for which the
relation Ri+2,j = ((φ ◦ ψ) × (φ ◦ ψ))−1(RX

δj∆i+2
) is not meager in Di,F ,

so there exist G ∈ [(i×N) \F ]<ℵ0 and H,H ′ ∈ [(∼i)×N]<ℵ0 for which
there are sequences r ∈ 2F , s ∈ 2G, t ∈ 2H , and t′ ∈ 2H

′
with the

property that Ri+2,j is comeager in Di,F ∩ (Nr∪s∪t ×Nr∪s∪t′), in which
case the set S of (c, (d, d′)) ∈ 2(i×N)\(F∪G) × (2((∼i)×N)\H × 2((∼i)×N)\H′)
for which ((c∪ r∪ s)∪ (d∪ t)) Ri+2,j ((c∪ r∪ s)∪ (d′∪ t′)) is comeager.

Let C be the set of c ∈ 2(i×N)\(F∪G) for which Sc is comeager, and
let D be the set of (c, d) ∈ 2(i×N)\(F∪G) × 2((∼i)×N)\H for which (Sc)d is
comeager. The Kuratowski-Ulam theorem ensures that C is comeager,
as is Dc for all c ∈ C.

Set Ri+1 = ((φ ◦ ψ) × (φ ◦ ψ))−1(RX
∆i+1

), and let T be the set of

(c, (d, e)) ∈ 2(i×N)\(F∪G) × (2((∼i)×N)\H × 2((∼i)×N)\H) with the property
that ((c ∪ r ∪ s) ∪ (d ∪ t)) Ri+1 ((c ∪ r ∪ s) ∪ (e ∪ t)).
Sublemma 4.6. Suppose that c ∈ C. Then Dc ×Dc ⊆ Tc.

Proof. Suppose that d, e ∈ Dc. Then there exists d′ ∈ (Sc)d ∩ (Sc)e,
so (φ ◦ ψ)((c ∪ r ∪ s) ∪ (d′ ∪ t′)) ∈ δj∆i+2(φ ◦ ψ)((c ∪ r ∪ s) ∪ (f ∪ t))
for all f ∈ {d, e}, in which case (φ ◦ ψ)((c ∪ r ∪ s) ∪ (e ∪ t)) is in
(δj∆i+2)−1δj∆i+2(φ ◦ ψ)((c ∪ r ∪ s) ∪ (d ∪ t)), which is itself contained
in ∆i+1(φ ◦ ψ)((c ∪ r ∪ s) ∪ (d ∪ t)), thus d Tc e.

Set M = {m ∈ N | (km, `m) ∈ F ∪ G ∪ H}, and define u ∈ 2M by
u(m) = (r ∪ s ∪ t)(km, `m) for all m ∈ M . Then there exists n ∈ N
for which kn = i and u v sn. Define N = {(kj, `j) | j < n} and
un ∈ 2N by un(kj, `j) = sn(j) for all j < n, and fix c ∈ C for which
un � ((i×N)∩N) v c∪ r ∪ s. Let φn : 2((∼i)×N)\H → 2((∼i)×N)\H be the
homeomorphism flipping coordinate (kn, `n), and fix d ∈ Dc ∩ φ−1

n (Dc)
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for which un � (((∼i) × N) ∩ N) v d ∪ t. Then Sublemma 4.6 ensures
that ((c∪ r ∪ s)∪ (d∪ t)) Ri+1 ((c∪ r ∪ s)∪ (φn(d)∪ t)), contradicting
the fact that φ is a homomorphism from G0,i to ∼RX

∆i+1
.

By composing φ◦ψ with the function obtained from applying Propo-
sition 3.6 to D and E, we obtain the desired homomorphism.

When Γ is non-archimedean, we obtain the following:

Proof of Theorem 3. To see that conditions (1) and (2) are mutually
exclusive, note that if Γ y X is σ-lacunary, then the Lusin-Novikov
uniformization theorem and Proposition 2.7 ensure that EX

Γ is essen-
tially countable, so Proposition 3.8 and the remarks preceding it imply
that there is no continuous embedding of EN

0 into EX
Γ .

It remains to show that at least one of the two conditions holds.
By [BK96, Theorem 7.1.2], the orbit equivalence relation induced by
every open subgroup of Γ is Borel. The fact that Γ is non-archimedean
therefore implies that the orbit relation induced by every open subset
of Γ is Borel. Note that condition (2) is equivalent to the apparently
weaker statement in which φ is merely Borel, since we can always pass
to a dense Gδ set C ⊆ 2N×N on which φ is continuous, and then compose
φ � C with the function given by Proposition 3.4. By [BK96, Theorem
5.2.1], we can therefore assume that Γ y X is continuous. Fix a
decreasing neighborhood basis (∆k)k∈N of 1Γ of open subgroups of Γ.
By replacing each ∆k with Γk ∩∆k, we can assume that ∆k ⊆ Γk for
all k ∈ N.

By Theorem 4.1, it is sufficient to show that if φ : 2N×N → X is a con-
tinuous homomorphism from ((=2N)k ×E<N

0 × (=2N)N)k∈N to (EX
∆k

)k∈N,

then it is a homomorphism from ((=2N)k × EN
0 )k∈N to (EX

∆k
)k∈N. To-

wards this end, suppose that k ∈ N and c, d ∈ 2N×N are ((=2N)k ×EN
0 )-

equivalent, and for all n ≥ k, let dn be the element of 2N×N that agrees
with d on n× N, and with c off of it. Then dn → d, so φ(dn)→ φ(d).
For all n ≥ k, fix δn ∈ ∆n such that δn · φ(dn) = φ(dn+1). Then
δn · · · δk · φ(c) = φ(dn+1) for all n ≥ k, so δn · · · δk · φ(c) → φ(d).
As δn · · · δm ∈ ∆m for all natural numbers n ≥ m ≥ k, it follows
that (δn · · · δk)n≥k is Cauchy with respect to every compatible complete
right-invariant metric on Γ, and therefore converges to some δ ∈ ∆k

(since open subgroups of topological groups are necessarily closed).
Then δn · · · δk ·φ(c)→ δ ·φ(c), so δ ·φ(c) = φ(d), thus φ(c) EX

∆k
φ(d).
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